仿射子空间集中条件

Pub Date : 2022-01-16 DOI:10.46298/epiga.2023.9382
Kuang-Yu Wu
{"title":"仿射子空间集中条件","authors":"Kuang-Yu Wu","doi":"10.46298/epiga.2023.9382","DOIUrl":null,"url":null,"abstract":"We define a new notion of affine subspace concentration conditions for\nlattice polytopes, and prove that they hold for smooth and reflexive polytopes\nwith barycenter at the origin. Our proof involves considering the slope\nstability of the canonical extension of the tangent bundle by the trivial line\nbundle and with the extension class $c_1(\\mathcal{T}_X)$ on Fano toric\nvarieties.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Affine Subspace Concentration Conditions\",\"authors\":\"Kuang-Yu Wu\",\"doi\":\"10.46298/epiga.2023.9382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a new notion of affine subspace concentration conditions for\\nlattice polytopes, and prove that they hold for smooth and reflexive polytopes\\nwith barycenter at the origin. Our proof involves considering the slope\\nstability of the canonical extension of the tangent bundle by the trivial line\\nbundle and with the extension class $c_1(\\\\mathcal{T}_X)$ on Fano toric\\nvarieties.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2023.9382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2023.9382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们定义了点阵多面体仿射子空间集中条件的新概念,并证明了它们适用于质心位于原点的光滑和自反多面体。我们的证明涉及考虑平凡线束和扩展类$c_1(\mathcal{T}_X)$在Fano toricvarieties上切束的正则扩展的斜率稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Affine Subspace Concentration Conditions
We define a new notion of affine subspace concentration conditions for lattice polytopes, and prove that they hold for smooth and reflexive polytopes with barycenter at the origin. Our proof involves considering the slope stability of the canonical extension of the tangent bundle by the trivial line bundle and with the extension class $c_1(\mathcal{T}_X)$ on Fano toric varieties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信