二阶K3曲面的余切束

IF 0.9 Q2 MATHEMATICS
F. Anella, A. Horing
{"title":"二阶K3曲面的余切束","authors":"F. Anella, A. Horing","doi":"10.46298/epiga.2023.9960","DOIUrl":null,"url":null,"abstract":"K3 surfaces have been studied from many points of view, but the positivity of\nthe cotangent bundle is not well understood. In this paper we explore the\nsurprisingly rich geometry of the projectivised cotangent bundle of a very\ngeneral polarised K3 surface $S$ of degree two. In particular, we describe the\ngeometry of a surface $D_S \\subset \\mathbb{P}(\\Omega_S)$ that plays a similar\nrole to the surface of bitangents for a quartic in $\\mathbb{P}^3$.","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The cotangent bundle of K3 surfaces of degree two\",\"authors\":\"F. Anella, A. Horing\",\"doi\":\"10.46298/epiga.2023.9960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"K3 surfaces have been studied from many points of view, but the positivity of\\nthe cotangent bundle is not well understood. In this paper we explore the\\nsurprisingly rich geometry of the projectivised cotangent bundle of a very\\ngeneral polarised K3 surface $S$ of degree two. In particular, we describe the\\ngeometry of a surface $D_S \\\\subset \\\\mathbb{P}(\\\\Omega_S)$ that plays a similar\\nrole to the surface of bitangents for a quartic in $\\\\mathbb{P}^3$.\",\"PeriodicalId\":41470,\"journal\":{\"name\":\"Epijournal de Geometrie Algebrique\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epijournal de Geometrie Algebrique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2023.9960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epijournal de Geometrie Algebrique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2023.9960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

K3表面已经从许多角度进行了研究,但是余切束的正性还没有得到很好的理解。在本文中,我们探索了一个非常一般的二阶极化K3曲面$S$的投影余切束的令人惊讶的丰富几何。特别地,我们描述了曲面$D_S \子集$ mathbb{P}(\Omega_S)$的几何形状,它的作用类似于$\mathbb{P}^3$中四次元的bitangents曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The cotangent bundle of K3 surfaces of degree two
K3 surfaces have been studied from many points of view, but the positivity of the cotangent bundle is not well understood. In this paper we explore the surprisingly rich geometry of the projectivised cotangent bundle of a very general polarised K3 surface $S$ of degree two. In particular, we describe the geometry of a surface $D_S \subset \mathbb{P}(\Omega_S)$ that plays a similar role to the surface of bitangents for a quartic in $\mathbb{P}^3$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
19
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信