大皮卡德定理和允许霍奇结构变化的变量的代数双曲性

IF 0.9 Q2 MATHEMATICS
Ya Deng
{"title":"大皮卡德定理和允许霍奇结构变化的变量的代数双曲性","authors":"Ya Deng","doi":"10.46298/epiga.2023.volume7.8393","DOIUrl":null,"url":null,"abstract":"In this paper, we study various hyperbolicity properties for a quasi-compact\nK\\\"ahler manifold $U$ which admits a complex polarized variation of Hodge\nstructures so that each fiber of the period map is zero-dimensional. In the\nfirst part, we prove that $U$ is algebraically hyperbolic and that the\ngeneralized big Picard theorem holds for $U$. In the second part, we prove that\nthere is a finite \\'etale cover $\\tilde{U}$ of $U$ from a quasi-projective\nmanifold $\\tilde{U}$ such that any projective compactification $X$ of\n$\\tilde{U}$ is Picard hyperbolic modulo the boundary $X-\\tilde{U}$, and any\nirreducible subvariety of $X$ not contained in $X-\\tilde{U}$ is of general\ntype. This result coarsely incorporates previous works by Nadel, Rousseau,\nBrunebarbe and Cadorel on the hyperbolicity of compactifications of quotients\nof bounded symmetric domains by torsion-free lattices.","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Big Picard theorems and algebraic hyperbolicity for varieties admitting a variation of Hodge structures\",\"authors\":\"Ya Deng\",\"doi\":\"10.46298/epiga.2023.volume7.8393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study various hyperbolicity properties for a quasi-compact\\nK\\\\\\\"ahler manifold $U$ which admits a complex polarized variation of Hodge\\nstructures so that each fiber of the period map is zero-dimensional. In the\\nfirst part, we prove that $U$ is algebraically hyperbolic and that the\\ngeneralized big Picard theorem holds for $U$. In the second part, we prove that\\nthere is a finite \\\\'etale cover $\\\\tilde{U}$ of $U$ from a quasi-projective\\nmanifold $\\\\tilde{U}$ such that any projective compactification $X$ of\\n$\\\\tilde{U}$ is Picard hyperbolic modulo the boundary $X-\\\\tilde{U}$, and any\\nirreducible subvariety of $X$ not contained in $X-\\\\tilde{U}$ is of general\\ntype. This result coarsely incorporates previous works by Nadel, Rousseau,\\nBrunebarbe and Cadorel on the hyperbolicity of compactifications of quotients\\nof bounded symmetric domains by torsion-free lattices.\",\"PeriodicalId\":41470,\"journal\":{\"name\":\"Epijournal de Geometrie Algebrique\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epijournal de Geometrie Algebrique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2023.volume7.8393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epijournal de Geometrie Algebrique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2023.volume7.8393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 17

摘要

本文研究了一类准紧k \ \ ahler流形的各种双曲性,该流形允许Hodgestructures的复极化变化,使得周期映射的每一根纤维都是零维的。在第一部分中,我们证明了$U$是代数双曲的,并证明了$U$的广义大皮卡德定理成立。第二部分证明了拟投影流形$\tilde{U}$的$U$的有限线性覆盖$\tilde{U}$使得$\tilde{U}$的任何射影紧化$X$是边界$X-\tilde{U}$的Picard双曲模,以及$X$不包含在$X-\tilde{U}$中的$X$的任何不可约子变种是一般型。这一结果大致结合了Nadel、Rousseau、Brunebarbe和Cadorel关于有界对称域上无扭格商紧化的双曲性的研究成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Big Picard theorems and algebraic hyperbolicity for varieties admitting a variation of Hodge structures
In this paper, we study various hyperbolicity properties for a quasi-compact K\"ahler manifold $U$ which admits a complex polarized variation of Hodge structures so that each fiber of the period map is zero-dimensional. In the first part, we prove that $U$ is algebraically hyperbolic and that the generalized big Picard theorem holds for $U$. In the second part, we prove that there is a finite \'etale cover $\tilde{U}$ of $U$ from a quasi-projective manifold $\tilde{U}$ such that any projective compactification $X$ of $\tilde{U}$ is Picard hyperbolic modulo the boundary $X-\tilde{U}$, and any irreducible subvariety of $X$ not contained in $X-\tilde{U}$ is of general type. This result coarsely incorporates previous works by Nadel, Rousseau, Brunebarbe and Cadorel on the hyperbolicity of compactifications of quotients of bounded symmetric domains by torsion-free lattices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
19
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信