群论Johnson类和具有扭转Ceresa类的非超椭圆曲线

IF 0.9 Q2 MATHEMATICS
Dean Bisogno, Wanlin Li, Daniel Litt, P. Srinivasan
{"title":"群论Johnson类和具有扭转Ceresa类的非超椭圆曲线","authors":"Dean Bisogno, Wanlin Li, Daniel Litt, P. Srinivasan","doi":"10.46298/epiga.2023.volume7.6849","DOIUrl":null,"url":null,"abstract":"Let l be a prime and G a pro-l group with torsion-free abelianization. We\nproduce group-theoretic analogues of the Johnson/Morita cocycle for G -- in the\ncase of surface groups, these cocycles appear to refine existing constructions\nwhen l=2. We apply this to the pro-l etale fundamental groups of smooth curves\nto obtain Galois-cohomological analogues, and discuss their relationship to\nwork of Hain and Matsumoto in the case the curve is proper. We analyze many of\nthe fundamental properties of these classes and use them to give an example of\na non-hyperelliptic curve whose Ceresa class has torsion image under the l-adic\nAbel-Jacobi map.","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Group-theoretic Johnson classes and a non-hyperelliptic curve with torsion Ceresa class\",\"authors\":\"Dean Bisogno, Wanlin Li, Daniel Litt, P. Srinivasan\",\"doi\":\"10.46298/epiga.2023.volume7.6849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let l be a prime and G a pro-l group with torsion-free abelianization. We\\nproduce group-theoretic analogues of the Johnson/Morita cocycle for G -- in the\\ncase of surface groups, these cocycles appear to refine existing constructions\\nwhen l=2. We apply this to the pro-l etale fundamental groups of smooth curves\\nto obtain Galois-cohomological analogues, and discuss their relationship to\\nwork of Hain and Matsumoto in the case the curve is proper. We analyze many of\\nthe fundamental properties of these classes and use them to give an example of\\na non-hyperelliptic curve whose Ceresa class has torsion image under the l-adic\\nAbel-Jacobi map.\",\"PeriodicalId\":41470,\"journal\":{\"name\":\"Epijournal de Geometrie Algebrique\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epijournal de Geometrie Algebrique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2023.volume7.6849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epijournal de Geometrie Algebrique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2023.volume7.6849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

设l为素数,G为无扭阿贝尔化的亲- 1群。我们提出了G的Johnson/Morita循环的群论类似物——在表面群的情况下,当l=2时,这些循环似乎改进了现有的结构。我们将其应用于光滑曲线的亲稳态基群,得到了伽罗瓦-上同调的类似物,并讨论了在曲线合适的情况下它们与Hain和Matsumoto的功的关系。我们分析了这些类的许多基本性质,并利用它们给出了一个非超椭圆曲线的例子,其中Ceresa类在l-adicAbel-Jacobi映射下具有扭转像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Group-theoretic Johnson classes and a non-hyperelliptic curve with torsion Ceresa class
Let l be a prime and G a pro-l group with torsion-free abelianization. We produce group-theoretic analogues of the Johnson/Morita cocycle for G -- in the case of surface groups, these cocycles appear to refine existing constructions when l=2. We apply this to the pro-l etale fundamental groups of smooth curves to obtain Galois-cohomological analogues, and discuss their relationship to work of Hain and Matsumoto in the case the curve is proper. We analyze many of the fundamental properties of these classes and use them to give an example of a non-hyperelliptic curve whose Ceresa class has torsion image under the l-adic Abel-Jacobi map.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
19
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信