{"title":"具有大反正则类的变种的k -稳定性","authors":"Chenyang Xu","doi":"10.46298/epiga.2023.10231","DOIUrl":null,"url":null,"abstract":"We extend the algebraic K-stability theory to projective klt pairs with a big\nanticanonical class. While in general such a pair could behave pathologically,\nit is observed in this note that K-semistability condition will force them to\nhave a klt anticanonical model, whose stability property is the same as the\noriginal pair.","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"K-stability for varieties with a big anticanonical class\",\"authors\":\"Chenyang Xu\",\"doi\":\"10.46298/epiga.2023.10231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the algebraic K-stability theory to projective klt pairs with a big\\nanticanonical class. While in general such a pair could behave pathologically,\\nit is observed in this note that K-semistability condition will force them to\\nhave a klt anticanonical model, whose stability property is the same as the\\noriginal pair.\",\"PeriodicalId\":41470,\"journal\":{\"name\":\"Epijournal de Geometrie Algebrique\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epijournal de Geometrie Algebrique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2023.10231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epijournal de Geometrie Algebrique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2023.10231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
K-stability for varieties with a big anticanonical class
We extend the algebraic K-stability theory to projective klt pairs with a big
anticanonical class. While in general such a pair could behave pathologically,
it is observed in this note that K-semistability condition will force them to
have a klt anticanonical model, whose stability property is the same as the
original pair.