仿射空间商上的环面作用

IF 0.9 Q2 MATHEMATICS
Ana-Maria Brecan, H. Franzen
{"title":"仿射空间商上的环面作用","authors":"Ana-Maria Brecan, H. Franzen","doi":"10.46298/epiga.2023.10073","DOIUrl":null,"url":null,"abstract":"We study the locus of fixed points of a torus action on a GIT quotient of a\ncomplex vector space by a reductive complex algebraic group which acts\nlinearly. We show that, under the assumption that $G$ acts freely on the stable\nlocus, the components of the fixed point locus are again GIT quotients of\nlinear subspaces by Levi subgroups.","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Torus Actions on Quotients of Affine Spaces\",\"authors\":\"Ana-Maria Brecan, H. Franzen\",\"doi\":\"10.46298/epiga.2023.10073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the locus of fixed points of a torus action on a GIT quotient of a\\ncomplex vector space by a reductive complex algebraic group which acts\\nlinearly. We show that, under the assumption that $G$ acts freely on the stable\\nlocus, the components of the fixed point locus are again GIT quotients of\\nlinear subspaces by Levi subgroups.\",\"PeriodicalId\":41470,\"journal\":{\"name\":\"Epijournal de Geometrie Algebrique\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epijournal de Geometrie Algebrique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2023.10073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epijournal de Geometrie Algebrique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2023.10073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用线性作用的约化复代数群,研究了复向量空间中GIT商上的环面作用的不动点轨迹。我们证明,在假设$G$自由作用于稳定轨迹的情况下,不动点轨迹的分量仍然是线性子空间由Levi子群构成的GIT商。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Torus Actions on Quotients of Affine Spaces
We study the locus of fixed points of a torus action on a GIT quotient of a complex vector space by a reductive complex algebraic group which acts linearly. We show that, under the assumption that $G$ acts freely on the stable locus, the components of the fixed point locus are again GIT quotients of linear subspaces by Levi subgroups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
19
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信