与复合代数相关的Picard数1的投影对称流形的刚性

IF 0.9 Q2 MATHEMATICS
Yifei Chen, Baohua Fu, Qifeng Li
{"title":"与复合代数相关的Picard数1的投影对称流形的刚性","authors":"Yifei Chen, Baohua Fu, Qifeng Li","doi":"10.46298/epiga.2023.10432","DOIUrl":null,"url":null,"abstract":"To each complex composition algebra $\\mathbb{A}$, there associates a\nprojective symmetric manifold $X(\\mathbb{A})$ of Picard number one, which is\njust a smooth hyperplane section of the following varieties ${\\rm Lag}(3,6),\n{\\rm Gr}(3,6), \\mathbb{S}_6, E_7/P_7.$ In this paper, it is proven that these\nvarieties are rigid, namely for any smooth family of projective manifolds over\na connected base, if one fiber is isomorphic to $X(\\mathbb{A})$, then every\nfiber is isomorphic to $X(\\mathbb{A})$.","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rigidity of projective symmetric manifolds of Picard number 1 associated to composition algebras\",\"authors\":\"Yifei Chen, Baohua Fu, Qifeng Li\",\"doi\":\"10.46298/epiga.2023.10432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To each complex composition algebra $\\\\mathbb{A}$, there associates a\\nprojective symmetric manifold $X(\\\\mathbb{A})$ of Picard number one, which is\\njust a smooth hyperplane section of the following varieties ${\\\\rm Lag}(3,6),\\n{\\\\rm Gr}(3,6), \\\\mathbb{S}_6, E_7/P_7.$ In this paper, it is proven that these\\nvarieties are rigid, namely for any smooth family of projective manifolds over\\na connected base, if one fiber is isomorphic to $X(\\\\mathbb{A})$, then every\\nfiber is isomorphic to $X(\\\\mathbb{A})$.\",\"PeriodicalId\":41470,\"journal\":{\"name\":\"Epijournal de Geometrie Algebrique\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epijournal de Geometrie Algebrique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2023.10432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epijournal de Geometrie Algebrique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2023.10432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

对于每一个复合代数$\mathbb{A}$,都有一个Picard 1的投影对称流形$X(\mathbb{A})$的关联,它只是以下变量${\rm Lag}(3,6),{\rm Gr}(3,6), \mathbb{S}_6, E_7/P_7的光滑超平面截面。本文证明了这些种类是刚性的,即对于连通基上的任意光滑投影流形族,如果一根纤维同构于X(\mathbb{A})$,则所有纤维同构于X(\mathbb{A})$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rigidity of projective symmetric manifolds of Picard number 1 associated to composition algebras
To each complex composition algebra $\mathbb{A}$, there associates a projective symmetric manifold $X(\mathbb{A})$ of Picard number one, which is just a smooth hyperplane section of the following varieties ${\rm Lag}(3,6), {\rm Gr}(3,6), \mathbb{S}_6, E_7/P_7.$ In this paper, it is proven that these varieties are rigid, namely for any smooth family of projective manifolds over a connected base, if one fiber is isomorphic to $X(\mathbb{A})$, then every fiber is isomorphic to $X(\mathbb{A})$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
19
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信