{"title":"三次四折线的曲面群","authors":"D. Huybrechts","doi":"10.46298/epiga.2023.10425","DOIUrl":null,"url":null,"abstract":"The surface of lines in a cubic fourfold intersecting a fixed line splits\nmotivically into two parts, one of which resembles a K3 surface. We define the\nanalogue of the Beauville-Voisin class and study the push-forward map to the\nFano variety of all lines with respect to the natural splitting of the\nBloch-Beilinson filtration introduced by Mingmin Shen and Charles Vial.","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"48 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chow groups of surfaces of lines in cubic fourfolds\",\"authors\":\"D. Huybrechts\",\"doi\":\"10.46298/epiga.2023.10425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The surface of lines in a cubic fourfold intersecting a fixed line splits\\nmotivically into two parts, one of which resembles a K3 surface. We define the\\nanalogue of the Beauville-Voisin class and study the push-forward map to the\\nFano variety of all lines with respect to the natural splitting of the\\nBloch-Beilinson filtration introduced by Mingmin Shen and Charles Vial.\",\"PeriodicalId\":41470,\"journal\":{\"name\":\"Epijournal de Geometrie Algebrique\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epijournal de Geometrie Algebrique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2023.10425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epijournal de Geometrie Algebrique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2023.10425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Chow groups of surfaces of lines in cubic fourfolds
The surface of lines in a cubic fourfold intersecting a fixed line splits
motivically into two parts, one of which resembles a K3 surface. We define the
analogue of the Beauville-Voisin class and study the push-forward map to the
Fano variety of all lines with respect to the natural splitting of the
Bloch-Beilinson filtration introduced by Mingmin Shen and Charles Vial.