三次四折线的曲面群

IF 0.9 Q2 MATHEMATICS
D. Huybrechts
{"title":"三次四折线的曲面群","authors":"D. Huybrechts","doi":"10.46298/epiga.2023.10425","DOIUrl":null,"url":null,"abstract":"The surface of lines in a cubic fourfold intersecting a fixed line splits\nmotivically into two parts, one of which resembles a K3 surface. We define the\nanalogue of the Beauville-Voisin class and study the push-forward map to the\nFano variety of all lines with respect to the natural splitting of the\nBloch-Beilinson filtration introduced by Mingmin Shen and Charles Vial.","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"48 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chow groups of surfaces of lines in cubic fourfolds\",\"authors\":\"D. Huybrechts\",\"doi\":\"10.46298/epiga.2023.10425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The surface of lines in a cubic fourfold intersecting a fixed line splits\\nmotivically into two parts, one of which resembles a K3 surface. We define the\\nanalogue of the Beauville-Voisin class and study the push-forward map to the\\nFano variety of all lines with respect to the natural splitting of the\\nBloch-Beilinson filtration introduced by Mingmin Shen and Charles Vial.\",\"PeriodicalId\":41470,\"journal\":{\"name\":\"Epijournal de Geometrie Algebrique\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epijournal de Geometrie Algebrique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2023.10425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epijournal de Geometrie Algebrique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2023.10425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

与一条固定的线相交的三次四边形的线的表面动力地分裂成两部分,其中一部分类似于K3表面。我们定义了Beauville-Voisin类的类似物,并研究了关于由Mingmin Shen和Charles Vial引入的bloch - beilinson过滤的自然分裂的所有线的fano变化的前推图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chow groups of surfaces of lines in cubic fourfolds
The surface of lines in a cubic fourfold intersecting a fixed line splits motivically into two parts, one of which resembles a K3 surface. We define the analogue of the Beauville-Voisin class and study the push-forward map to the Fano variety of all lines with respect to the natural splitting of the Bloch-Beilinson filtration introduced by Mingmin Shen and Charles Vial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
19
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信