雅可比矩阵的光滑亚变体

Pub Date : 2022-05-25 DOI:10.46298/epiga.2023.10321
Olivier Benoist, O. Debarre
{"title":"雅可比矩阵的光滑亚变体","authors":"Olivier Benoist, O. Debarre","doi":"10.46298/epiga.2023.10321","DOIUrl":null,"url":null,"abstract":"We give new examples of algebraic integral cohomology classes on smooth\nprojective complex varieties that are not integral linear combinations of\nclasses of smooth subvarieties. Some of our examples have dimension 6, the\nlowest possible. The classes that we consider are minimal cohomology classes on\nJacobians of very general curves. Our main tool is complex cobordism.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Smooth subvarieties of Jacobians\",\"authors\":\"Olivier Benoist, O. Debarre\",\"doi\":\"10.46298/epiga.2023.10321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give new examples of algebraic integral cohomology classes on smooth\\nprojective complex varieties that are not integral linear combinations of\\nclasses of smooth subvarieties. Some of our examples have dimension 6, the\\nlowest possible. The classes that we consider are minimal cohomology classes on\\nJacobians of very general curves. Our main tool is complex cobordism.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2023.10321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2023.10321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

给出了光滑射影复变上的代数积分上同调类的新例子,这些代数积分上同调类不是光滑子变类的积分线性组合。有些例子的维数是6,这是最小的。我们考虑的类是非常一般曲线的雅可比矩阵上的极小上同类。我们的主要工具是复坐标法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Smooth subvarieties of Jacobians
We give new examples of algebraic integral cohomology classes on smooth projective complex varieties that are not integral linear combinations of classes of smooth subvarieties. Some of our examples have dimension 6, the lowest possible. The classes that we consider are minimal cohomology classes on Jacobians of very general curves. Our main tool is complex cobordism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信