经由环几何的商的积分上同调

Pub Date : 2019-08-16 DOI:10.46298/epiga.2022.volume6.5762
Gr'egoire Menet
{"title":"经由环几何的商的积分上同调","authors":"Gr'egoire Menet","doi":"10.46298/epiga.2022.volume6.5762","DOIUrl":null,"url":null,"abstract":"We describe the integral cohomology of $X/G$ where $X$ is a compact complex\nmanifold and $G$ a cyclic group of prime order with only isolated fixed points.\nAs a preliminary step, we investigate the integral cohomology of toric blow-ups\nof quotients of $\\mathbb{C}^n$. We also provide necessary and sufficient\nconditions for the spectral sequence of equivariant cohomology of $(X,G)$ to\ndegenerate at the second page. As an application, we compute the\nBeauville--Bogomolov form of $X/G$ when $X$ is a Hilbert scheme of points on a\nK3 surface and $G$ a symplectic automorphism group of orders 5 or 7.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Integral cohomology of quotients via toric geometry\",\"authors\":\"Gr'egoire Menet\",\"doi\":\"10.46298/epiga.2022.volume6.5762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the integral cohomology of $X/G$ where $X$ is a compact complex\\nmanifold and $G$ a cyclic group of prime order with only isolated fixed points.\\nAs a preliminary step, we investigate the integral cohomology of toric blow-ups\\nof quotients of $\\\\mathbb{C}^n$. We also provide necessary and sufficient\\nconditions for the spectral sequence of equivariant cohomology of $(X,G)$ to\\ndegenerate at the second page. As an application, we compute the\\nBeauville--Bogomolov form of $X/G$ when $X$ is a Hilbert scheme of points on a\\nK3 surface and $G$ a symplectic automorphism group of orders 5 or 7.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2022.volume6.5762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2022.volume6.5762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

描述了$X/G$的积分上同调,其中$X$是紧复流形,$G$是只有孤立不动点的素阶循环群。作为第一步,我们研究了$\mathbb{C}^n$的环膨胀商的积分上同调性。在第二页给出了$(X,G)$等变上同调谱序列简并的充分必要条件。作为应用,我们计算了当$X$是aK3曲面上点的Hilbert格式,$G$是5阶或7阶辛自同构群时$X/G$的beauville—Bogomolov形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Integral cohomology of quotients via toric geometry
We describe the integral cohomology of $X/G$ where $X$ is a compact complex manifold and $G$ a cyclic group of prime order with only isolated fixed points. As a preliminary step, we investigate the integral cohomology of toric blow-ups of quotients of $\mathbb{C}^n$. We also provide necessary and sufficient conditions for the spectral sequence of equivariant cohomology of $(X,G)$ to degenerate at the second page. As an application, we compute the Beauville--Bogomolov form of $X/G$ when $X$ is a Hilbert scheme of points on a K3 surface and $G$ a symplectic automorphism group of orders 5 or 7.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信