{"title":"扭曲立方体的空间","authors":"K. Heinrich, R. Skjelnes, J. Stevens","doi":"10.46298/epiga.2021.volume5.5573","DOIUrl":null,"url":null,"abstract":"We consider the Cohen-Macaulay compactification of the space of twisted\ncubics in projective n-space. This compactification is the fine moduli scheme\nrepresenting the functor of CM-curves with Hilbert polynomial 3t+1. We show\nthat the moduli scheme of CM-curves in projective 3-space is isomorphic to the\ntwisted cubic component of the Hilbert scheme. We also describe the\ncompactification for twisted cubics in n-space.\n\n Comment: 22 pages. Final version","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The space of twisted cubics\",\"authors\":\"K. Heinrich, R. Skjelnes, J. Stevens\",\"doi\":\"10.46298/epiga.2021.volume5.5573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Cohen-Macaulay compactification of the space of twisted\\ncubics in projective n-space. This compactification is the fine moduli scheme\\nrepresenting the functor of CM-curves with Hilbert polynomial 3t+1. We show\\nthat the moduli scheme of CM-curves in projective 3-space is isomorphic to the\\ntwisted cubic component of the Hilbert scheme. We also describe the\\ncompactification for twisted cubics in n-space.\\n\\n Comment: 22 pages. Final version\",\"PeriodicalId\":41470,\"journal\":{\"name\":\"Epijournal de Geometrie Algebrique\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epijournal de Geometrie Algebrique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2021.volume5.5573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epijournal de Geometrie Algebrique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2021.volume5.5573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We consider the Cohen-Macaulay compactification of the space of twisted
cubics in projective n-space. This compactification is the fine moduli scheme
representing the functor of CM-curves with Hilbert polynomial 3t+1. We show
that the moduli scheme of CM-curves in projective 3-space is isomorphic to the
twisted cubic component of the Hilbert scheme. We also describe the
compactification for twisted cubics in n-space.
Comment: 22 pages. Final version