扭曲立方体的空间

Pub Date : 2019-04-01 DOI:10.46298/epiga.2021.volume5.5573
K. Heinrich, R. Skjelnes, J. Stevens
{"title":"扭曲立方体的空间","authors":"K. Heinrich, R. Skjelnes, J. Stevens","doi":"10.46298/epiga.2021.volume5.5573","DOIUrl":null,"url":null,"abstract":"We consider the Cohen-Macaulay compactification of the space of twisted\ncubics in projective n-space. This compactification is the fine moduli scheme\nrepresenting the functor of CM-curves with Hilbert polynomial 3t+1. We show\nthat the moduli scheme of CM-curves in projective 3-space is isomorphic to the\ntwisted cubic component of the Hilbert scheme. We also describe the\ncompactification for twisted cubics in n-space.\n\n Comment: 22 pages. Final version","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The space of twisted cubics\",\"authors\":\"K. Heinrich, R. Skjelnes, J. Stevens\",\"doi\":\"10.46298/epiga.2021.volume5.5573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Cohen-Macaulay compactification of the space of twisted\\ncubics in projective n-space. This compactification is the fine moduli scheme\\nrepresenting the functor of CM-curves with Hilbert polynomial 3t+1. We show\\nthat the moduli scheme of CM-curves in projective 3-space is isomorphic to the\\ntwisted cubic component of the Hilbert scheme. We also describe the\\ncompactification for twisted cubics in n-space.\\n\\n Comment: 22 pages. Final version\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2021.volume5.5573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2021.volume5.5573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了射影n空间中扭曲立方体空间的Cohen-Macaulay紧化问题。这种紧化是表示具有Hilbert多项式3t+1的cm曲线函子的精细模格式。证明了投影三维空间中cm曲线的模格式与Hilbert格式的扭曲三次分量是同构的。我们还描述了n空间中扭曲立方体的紧化。评论:22页。最终版本
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The space of twisted cubics
We consider the Cohen-Macaulay compactification of the space of twisted cubics in projective n-space. This compactification is the fine moduli scheme representing the functor of CM-curves with Hilbert polynomial 3t+1. We show that the moduli scheme of CM-curves in projective 3-space is isomorphic to the twisted cubic component of the Hilbert scheme. We also describe the compactification for twisted cubics in n-space. Comment: 22 pages. Final version
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信