有限等变向量束的一般平凡性

Pub Date : 2021-03-11 DOI:10.46298/epiga.2021.7275
I. Biswas, P. O'Sullivan
{"title":"有限等变向量束的一般平凡性","authors":"I. Biswas, P. O'Sullivan","doi":"10.46298/epiga.2021.7275","DOIUrl":null,"url":null,"abstract":"Let H be a complex Lie group acting holomorphically on a complex analytic\nspace X such that the restriction to X_{\\mathrm{red}} of every H-invariant\nregular function on X is constant. We prove that an H-equivariant holomorphic\nvector bundle E over X is $H$-finite, meaning f_1(E)= f_2(E) as H-equivariant\nbundles for two distinct polynomials f_1 and f_2 whose coefficients are\nnonnegative integers, if and only if the pullback of E along some H-equivariant\nfinite \\'etale covering of X is trivial as an H-equivariant bundle.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"\\\\'Etale triviality of finite equivariant vector bundles\",\"authors\":\"I. Biswas, P. O'Sullivan\",\"doi\":\"10.46298/epiga.2021.7275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let H be a complex Lie group acting holomorphically on a complex analytic\\nspace X such that the restriction to X_{\\\\mathrm{red}} of every H-invariant\\nregular function on X is constant. We prove that an H-equivariant holomorphic\\nvector bundle E over X is $H$-finite, meaning f_1(E)= f_2(E) as H-equivariant\\nbundles for two distinct polynomials f_1 and f_2 whose coefficients are\\nnonnegative integers, if and only if the pullback of E along some H-equivariant\\nfinite \\\\'etale covering of X is trivial as an H-equivariant bundle.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2021.7275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2021.7275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设H是作用于复解析空间X上的一个复李群,使得X上的每一个H-不正则函数对X_{\ mathm {red}}的限制是常数。证明了一个H-等变全纯向量束E / X是$H$-有限的,即对于系数为非负整数的两个不同多项式f_1和f_2,当且仅当E沿X的H-等变有限覆盖的回拉作为H-等变束是平凡的,则f_1(E)= f_2(E)为H-等变束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
\'Etale triviality of finite equivariant vector bundles
Let H be a complex Lie group acting holomorphically on a complex analytic space X such that the restriction to X_{\mathrm{red}} of every H-invariant regular function on X is constant. We prove that an H-equivariant holomorphic vector bundle E over X is $H$-finite, meaning f_1(E)= f_2(E) as H-equivariant bundles for two distinct polynomials f_1 and f_2 whose coefficients are nonnegative integers, if and only if the pullback of E along some H-equivariant finite \'etale covering of X is trivial as an H-equivariant bundle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信