公制网束的非阿基米德体积

Pub Date : 2020-11-13 DOI:10.46298/epiga.2021.6908
S. Boucksom, Walter Gubler, Florent Martin
{"title":"公制网束的非阿基米德体积","authors":"S. Boucksom, Walter Gubler, Florent Martin","doi":"10.46298/epiga.2021.6908","DOIUrl":null,"url":null,"abstract":"Let $L$ be a line bundle on a proper, geometrically reduced scheme $X$ over a\nnon-trivially valued non-Archimedean field $K$. Roughly speaking, the\nnon-Archimedean volume of a continuous metric on the Berkovich analytification\nof $L$ measures the asymptotic growth of the space of small sections of tensor\npowers of $L$. For a continuous semipositive metric on $L$ in the sense of\nZhang, we show first that the non-Archimedean volume agrees with the energy.\nThe existence of such a semipositive metric yields that $L$ is nef. A second\nresult is that the non-Archimedean volume is differentiable at any semipositive\ncontinuous metric. These results are known when $L$ is ample, and the purpose\nof this paper is to generalize them to the nef case. The method is based on a\ndetailed study of the content and the volume of a finitely presented torsion\nmodule over the (possibly non-noetherian) valuation ring of $K$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Non-Archimedean volumes of metrized nef line bundles\",\"authors\":\"S. Boucksom, Walter Gubler, Florent Martin\",\"doi\":\"10.46298/epiga.2021.6908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $L$ be a line bundle on a proper, geometrically reduced scheme $X$ over a\\nnon-trivially valued non-Archimedean field $K$. Roughly speaking, the\\nnon-Archimedean volume of a continuous metric on the Berkovich analytification\\nof $L$ measures the asymptotic growth of the space of small sections of tensor\\npowers of $L$. For a continuous semipositive metric on $L$ in the sense of\\nZhang, we show first that the non-Archimedean volume agrees with the energy.\\nThe existence of such a semipositive metric yields that $L$ is nef. A second\\nresult is that the non-Archimedean volume is differentiable at any semipositive\\ncontinuous metric. These results are known when $L$ is ample, and the purpose\\nof this paper is to generalize them to the nef case. The method is based on a\\ndetailed study of the content and the volume of a finitely presented torsion\\nmodule over the (possibly non-noetherian) valuation ring of $K$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2021.6908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2021.6908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

设$L$是在非平凡值非阿基米德域$K$上的一个适当的几何简化格式$X$上的一个线束。粗略地说,在L$的Berkovich分析上的连续度规的非阿基米德体积度量了L$的张量幂的小截面空间的渐近增长。对于张氏意义上的L上的连续半正度规,我们首先证明了非阿基米德体积与能量是一致的。这种半正度量的存在使得$L$为nef。第二个结果是,非阿基米德体积在任何半正连续度规下都是可微的。当$L$足够时,这些结果是已知的,本文的目的是将它们推广到新情况。该方法是基于在$K$的估值环上(可能是非诺etherian)的有限呈现的扭模的内容和体积的详细研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Non-Archimedean volumes of metrized nef line bundles
Let $L$ be a line bundle on a proper, geometrically reduced scheme $X$ over a non-trivially valued non-Archimedean field $K$. Roughly speaking, the non-Archimedean volume of a continuous metric on the Berkovich analytification of $L$ measures the asymptotic growth of the space of small sections of tensor powers of $L$. For a continuous semipositive metric on $L$ in the sense of Zhang, we show first that the non-Archimedean volume agrees with the energy. The existence of such a semipositive metric yields that $L$ is nef. A second result is that the non-Archimedean volume is differentiable at any semipositive continuous metric. These results are known when $L$ is ample, and the purpose of this paper is to generalize them to the nef case. The method is based on a detailed study of the content and the volume of a finitely presented torsion module over the (possibly non-noetherian) valuation ring of $K$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信