任意维基上雅可比矩阵的N 'eron模型

IF 0.9 Q2 MATHEMATICS
Thibault Poiret
{"title":"任意维基上雅可比矩阵的N 'eron模型","authors":"Thibault Poiret","doi":"10.46298/epiga.2022.7340","DOIUrl":null,"url":null,"abstract":"We work with a smooth relative curve $X_U/U$ with nodal reduction over an\nexcellent and locally factorial scheme $S$. We show that blowing up a nodal\nmodel of $X_U$ in the ideal sheaf of a section yields a new nodal model, and\ndescribe how these models relate to each other. We construct a N\\'eron model\nfor the Jacobian of $X_U$, and describe it locally on $S$ as a quotient of the\nPicard space of a well-chosen nodal model. We provide a combinatorial criterion\nfor the N\\'eron model to be separated.","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"N\\\\'eron models of Jacobians over bases of arbitrary dimension\",\"authors\":\"Thibault Poiret\",\"doi\":\"10.46298/epiga.2022.7340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We work with a smooth relative curve $X_U/U$ with nodal reduction over an\\nexcellent and locally factorial scheme $S$. We show that blowing up a nodal\\nmodel of $X_U$ in the ideal sheaf of a section yields a new nodal model, and\\ndescribe how these models relate to each other. We construct a N\\\\'eron model\\nfor the Jacobian of $X_U$, and describe it locally on $S$ as a quotient of the\\nPicard space of a well-chosen nodal model. We provide a combinatorial criterion\\nfor the N\\\\'eron model to be separated.\",\"PeriodicalId\":41470,\"journal\":{\"name\":\"Epijournal de Geometrie Algebrique\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epijournal de Geometrie Algebrique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2022.7340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epijournal de Geometrie Algebrique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2022.7340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们在一个优秀的局部阶乘方案$S$上处理一个平滑的相对曲线$X_U/ $ U$,并带有节点约简。我们证明了在一个截面的理想层中爆破xu的节点模型可以产生一个新的节点模型,并描述了这些模型如何相互关联。我们构造了xu的雅可比矩阵的N′eron模型,并在S$上局部描述为一个选定的节点模型的picard空间的商。我们为N\'eron模型的分离提供了一个组合准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
N\'eron models of Jacobians over bases of arbitrary dimension
We work with a smooth relative curve $X_U/U$ with nodal reduction over an excellent and locally factorial scheme $S$. We show that blowing up a nodal model of $X_U$ in the ideal sheaf of a section yields a new nodal model, and describe how these models relate to each other. We construct a N\'eron model for the Jacobian of $X_U$, and describe it locally on $S$ as a quotient of the Picard space of a well-chosen nodal model. We provide a combinatorial criterion for the N\'eron model to be separated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
19
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信