{"title":"复数格林函数和范诺流形","authors":"Nicholas McCleerey, Valentino Tosatti","doi":"10.46298/epiga.2019.volume3.4706","DOIUrl":null,"url":null,"abstract":"We show that if a Fano manifold does not admit Kahler-Einstein metrics then\nthe Kahler potentials along the continuity method subconverge to a function\nwith analytic singularities along a subvariety which solves the homogeneous\ncomplex Monge-Ampere equation on its complement, confirming an expectation of\nTian-Yau.\n\n Comment: EpiGA Volume 3 (2019), Article Nr. 9","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2018-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Pluricomplex Green's functions and Fano manifolds\",\"authors\":\"Nicholas McCleerey, Valentino Tosatti\",\"doi\":\"10.46298/epiga.2019.volume3.4706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that if a Fano manifold does not admit Kahler-Einstein metrics then\\nthe Kahler potentials along the continuity method subconverge to a function\\nwith analytic singularities along a subvariety which solves the homogeneous\\ncomplex Monge-Ampere equation on its complement, confirming an expectation of\\nTian-Yau.\\n\\n Comment: EpiGA Volume 3 (2019), Article Nr. 9\",\"PeriodicalId\":41470,\"journal\":{\"name\":\"Epijournal de Geometrie Algebrique\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2018-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epijournal de Geometrie Algebrique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2019.volume3.4706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epijournal de Geometrie Algebrique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2019.volume3.4706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We show that if a Fano manifold does not admit Kahler-Einstein metrics then
the Kahler potentials along the continuity method subconverge to a function
with analytic singularities along a subvariety which solves the homogeneous
complex Monge-Ampere equation on its complement, confirming an expectation of
Tian-Yau.
Comment: EpiGA Volume 3 (2019), Article Nr. 9