紧K\ ahler流形上幂偶群的哈密顿作用

IF 0.9 Q2 MATHEMATICS
D. Greb, C. Miebach
{"title":"紧K\\ ahler流形上幂偶群的哈密顿作用","authors":"D. Greb, C. Miebach","doi":"10.46298/epiga.2018.volume2.4486","DOIUrl":null,"url":null,"abstract":"We study meromorphic actions of unipotent complex Lie groups on compact\nK\\\"ahler manifolds using moment map techniques. We introduce natural stability\nconditions and show that sets of semistable points are Zariski-open and admit\ngeometric quotients that carry compactifiable K\\\"ahler structures obtained by\nsymplectic reduction. The relation of our complex-analytic theory to the work\nof Doran--Kirwan regarding the Geometric Invariant Theory of unipotent group\nactions on projective varieties is discussed in detail.\n\n Comment: v2: 30 pages, final version as accepted by EPIGA","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2018-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hamiltonian actions of unipotent groups on compact K\\\\\\\"ahler manifolds\",\"authors\":\"D. Greb, C. Miebach\",\"doi\":\"10.46298/epiga.2018.volume2.4486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study meromorphic actions of unipotent complex Lie groups on compact\\nK\\\\\\\"ahler manifolds using moment map techniques. We introduce natural stability\\nconditions and show that sets of semistable points are Zariski-open and admit\\ngeometric quotients that carry compactifiable K\\\\\\\"ahler structures obtained by\\nsymplectic reduction. The relation of our complex-analytic theory to the work\\nof Doran--Kirwan regarding the Geometric Invariant Theory of unipotent group\\nactions on projective varieties is discussed in detail.\\n\\n Comment: v2: 30 pages, final version as accepted by EPIGA\",\"PeriodicalId\":41470,\"journal\":{\"name\":\"Epijournal de Geometrie Algebrique\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2018-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epijournal de Geometrie Algebrique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2018.volume2.4486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epijournal de Geometrie Algebrique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2018.volume2.4486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

利用矩映射技术研究了紧阿勒流形上单幂复李群的亚纯作用。引入自然稳定条件,证明了半稳定点集是zariski -开和容许的几何商,它们携带由辛约化得到的可紧化K\ ahler结构。详细讨论了复解析理论与Doran—Kirwan关于射影变簇上单幂群的几何不变理论的关系。评论:v2: 30页,最终版本被EPIGA接受
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hamiltonian actions of unipotent groups on compact K\"ahler manifolds
We study meromorphic actions of unipotent complex Lie groups on compact K\"ahler manifolds using moment map techniques. We introduce natural stability conditions and show that sets of semistable points are Zariski-open and admit geometric quotients that carry compactifiable K\"ahler structures obtained by symplectic reduction. The relation of our complex-analytic theory to the work of Doran--Kirwan regarding the Geometric Invariant Theory of unipotent group actions on projective varieties is discussed in detail. Comment: v2: 30 pages, final version as accepted by EPIGA
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
19
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信