角多面体图的数目

IF 0.7 4区 数学
Clément Dervieux, Dominique Poulalhon, G. Schaeffer
{"title":"角多面体图的数目","authors":"Clément Dervieux, Dominique Poulalhon, G. Schaeffer","doi":"10.46298/dmtcs.6420","DOIUrl":null,"url":null,"abstract":"Corner polyhedra were introduced by Eppstein and Mumford (2014) as the set of simply connected 3D polyhedra such that all vertices have non negative integer coordinates, edges are parallel to the coordinate axes and all vertices but one can be seen from infinity in the direction (1, 1, 1). These authors gave a remarkable characterization of the set of corner polyhedra graphs, that is graphs that can be skeleton of a corner polyhedron: as planar maps, they are the duals of some particular bipartite triangulations, which we call hereafter corner triangulations. \n \nIn this paper we count corner polyhedral graphs by determining the generating function of the corner triangulations with respect to the number of vertices: we obtain an explicit rational expression for it in terms of the Catalan gen- erating function. We first show that this result can be derived using Tutte's classical compositional approach. Then, in order to explain the occurrence of the Catalan series we give a direct algebraic decomposition of corner triangu- lations: in particular we exhibit a family of almond triangulations that admit a recursive decomposition structurally equivalent to the decomposition of binary trees. Finally we sketch a direct bijection between binary trees and almond triangulations. Our combinatorial analysis yields a simpler alternative to the algorithm of Eppstein and Mumford for endowing a corner polyhedral graph with the cycle cover structure needed to realize it as a polyhedral graph.","PeriodicalId":55175,"journal":{"name":"Discrete Mathematics and Theoretical Computer Science","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The number of corner polyhedra graphs\",\"authors\":\"Clément Dervieux, Dominique Poulalhon, G. Schaeffer\",\"doi\":\"10.46298/dmtcs.6420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Corner polyhedra were introduced by Eppstein and Mumford (2014) as the set of simply connected 3D polyhedra such that all vertices have non negative integer coordinates, edges are parallel to the coordinate axes and all vertices but one can be seen from infinity in the direction (1, 1, 1). These authors gave a remarkable characterization of the set of corner polyhedra graphs, that is graphs that can be skeleton of a corner polyhedron: as planar maps, they are the duals of some particular bipartite triangulations, which we call hereafter corner triangulations. \\n \\nIn this paper we count corner polyhedral graphs by determining the generating function of the corner triangulations with respect to the number of vertices: we obtain an explicit rational expression for it in terms of the Catalan gen- erating function. We first show that this result can be derived using Tutte's classical compositional approach. Then, in order to explain the occurrence of the Catalan series we give a direct algebraic decomposition of corner triangu- lations: in particular we exhibit a family of almond triangulations that admit a recursive decomposition structurally equivalent to the decomposition of binary trees. Finally we sketch a direct bijection between binary trees and almond triangulations. Our combinatorial analysis yields a simpler alternative to the algorithm of Eppstein and Mumford for endowing a corner polyhedral graph with the cycle cover structure needed to realize it as a polyhedral graph.\",\"PeriodicalId\":55175,\"journal\":{\"name\":\"Discrete Mathematics and Theoretical Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2016-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics and Theoretical Computer Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.46298/dmtcs.6420\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Theoretical Computer Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.46298/dmtcs.6420","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

角多面体是由Eppstein和Mumford(2014)引入的,作为一组单连通的三维多面体,所有顶点都具有非负整数坐标,边平行于坐标轴,所有顶点都可以在(1,1,1)方向上从无穷远处看到。这些作者给出了角多面体图集合的一个显著特征,即可以作为角多面体骨架的图:作为平面地图,它们是某些特定的二部三角剖分的对偶,我们以后称之为角三角剖分。本文通过确定角三角形关于顶点数的生成函数,对角多面体图进行计数,用加泰罗尼亚生成函数给出了角多面体图的显式有理表达式。我们首先证明了这个结果可以用Tutte的经典构图方法推导出来。然后,为了解释Catalan级数的出现,我们给出了角三角形的直接代数分解:特别是我们展示了一组杏仁三角形,它允许递归分解,结构上等同于二叉树的分解。最后给出了二叉树与杏仁三角形之间的直接二射。我们的组合分析提供了一种比epppstein和Mumford算法更简单的替代方案,用于赋予角多面体图以实现多面体图所需的循环盖结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The number of corner polyhedra graphs
Corner polyhedra were introduced by Eppstein and Mumford (2014) as the set of simply connected 3D polyhedra such that all vertices have non negative integer coordinates, edges are parallel to the coordinate axes and all vertices but one can be seen from infinity in the direction (1, 1, 1). These authors gave a remarkable characterization of the set of corner polyhedra graphs, that is graphs that can be skeleton of a corner polyhedron: as planar maps, they are the duals of some particular bipartite triangulations, which we call hereafter corner triangulations. In this paper we count corner polyhedral graphs by determining the generating function of the corner triangulations with respect to the number of vertices: we obtain an explicit rational expression for it in terms of the Catalan gen- erating function. We first show that this result can be derived using Tutte's classical compositional approach. Then, in order to explain the occurrence of the Catalan series we give a direct algebraic decomposition of corner triangu- lations: in particular we exhibit a family of almond triangulations that admit a recursive decomposition structurally equivalent to the decomposition of binary trees. Finally we sketch a direct bijection between binary trees and almond triangulations. Our combinatorial analysis yields a simpler alternative to the algorithm of Eppstein and Mumford for endowing a corner polyhedral graph with the cycle cover structure needed to realize it as a polyhedral graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
14.30%
发文量
39
期刊介绍: DMTCS is a open access scientic journal that is online since 1998. We are member of the Free Journal Network. Sections of DMTCS Analysis of Algorithms Automata, Logic and Semantics Combinatorics Discrete Algorithms Distributed Computing and Networking Graph Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信