{"title":"三维点阵模型在正八邻域中的继续分类","authors":"A. Bacher, Manuel Kauers, Rika Yatchak","doi":"10.46298/dmtcs.6415","DOIUrl":null,"url":null,"abstract":"International audience\n \n We continue the investigations of lattice walks in the three-dimensional lattice restricted to the positive octant. We separate models which clearly have a D-finite generating function from models for which there is no reason to expect that their generating function is D-finite, and we isolate a small set of models whose nature remains unclear and requires further investigation. For these, we give some experimental results about their asymptotic behaviour, based on the inspection of a large number of initial terms. At least for some of them, the guessed asymptotic form seems to tip the balance towards non-D-finiteness.\n","PeriodicalId":55175,"journal":{"name":"Discrete Mathematics and Theoretical Computer Science","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Continued Classification of 3D Lattice Models in the Positive Octant\",\"authors\":\"A. Bacher, Manuel Kauers, Rika Yatchak\",\"doi\":\"10.46298/dmtcs.6415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"International audience\\n \\n We continue the investigations of lattice walks in the three-dimensional lattice restricted to the positive octant. We separate models which clearly have a D-finite generating function from models for which there is no reason to expect that their generating function is D-finite, and we isolate a small set of models whose nature remains unclear and requires further investigation. For these, we give some experimental results about their asymptotic behaviour, based on the inspection of a large number of initial terms. At least for some of them, the guessed asymptotic form seems to tip the balance towards non-D-finiteness.\\n\",\"PeriodicalId\":55175,\"journal\":{\"name\":\"Discrete Mathematics and Theoretical Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2016-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics and Theoretical Computer Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.46298/dmtcs.6415\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Theoretical Computer Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.46298/dmtcs.6415","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Continued Classification of 3D Lattice Models in the Positive Octant
International audience
We continue the investigations of lattice walks in the three-dimensional lattice restricted to the positive octant. We separate models which clearly have a D-finite generating function from models for which there is no reason to expect that their generating function is D-finite, and we isolate a small set of models whose nature remains unclear and requires further investigation. For these, we give some experimental results about their asymptotic behaviour, based on the inspection of a large number of initial terms. At least for some of them, the guessed asymptotic form seems to tip the balance towards non-D-finiteness.
期刊介绍:
DMTCS is a open access scientic journal that is online since 1998. We are member of the Free Journal Network.
Sections of DMTCS
Analysis of Algorithms
Automata, Logic and Semantics
Combinatorics
Discrete Algorithms
Distributed Computing and Networking
Graph Theory.