蛋白编码基因表达预测肺癌分期

Sicong Chen
{"title":"蛋白编码基因表达预测肺癌分期","authors":"Sicong Chen","doi":"10.4236/abb.2023.148024","DOIUrl":null,"url":null,"abstract":"Predicting the stages of cancer accurately is crucial for effective treatment planning. In this study, we aimed to develop a model using gene expression data and XGBoost (eXtreme Gradient Boosting) that include clinical and demographic variables to predict specific lung cancer stages in patients. By conducting the feature selection using the Wilcoxon Rank Test, we picked the most impactful genes associated with lung cancer stage prediction. Our model achieved an overall accuracy of 82% in classifying lung cancer stages according to patients’ gene expression data. These findings demonstrate the potential of gene expression analysis and machine learning techniques in improving the accuracy of lung cancer stage prediction, aiding in personalized treatment decisions.","PeriodicalId":65405,"journal":{"name":"生命科学与技术进展(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Lung Cancer Stage by Expressions of Protein-Encoding Genes\",\"authors\":\"Sicong Chen\",\"doi\":\"10.4236/abb.2023.148024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting the stages of cancer accurately is crucial for effective treatment planning. In this study, we aimed to develop a model using gene expression data and XGBoost (eXtreme Gradient Boosting) that include clinical and demographic variables to predict specific lung cancer stages in patients. By conducting the feature selection using the Wilcoxon Rank Test, we picked the most impactful genes associated with lung cancer stage prediction. Our model achieved an overall accuracy of 82% in classifying lung cancer stages according to patients’ gene expression data. These findings demonstrate the potential of gene expression analysis and machine learning techniques in improving the accuracy of lung cancer stage prediction, aiding in personalized treatment decisions.\",\"PeriodicalId\":65405,\"journal\":{\"name\":\"生命科学与技术进展(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生命科学与技术进展(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/abb.2023.148024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生命科学与技术进展(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/abb.2023.148024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确预测癌症的分期对于制定有效的治疗计划至关重要。在这项研究中,我们旨在利用基因表达数据和包括临床和人口统计学变量的XGBoost (eXtreme Gradient Boosting)建立一个模型来预测患者的特定肺癌分期。通过使用Wilcoxon秩检验进行特征选择,我们选择了与肺癌分期预测相关的最具影响力的基因。我们的模型根据患者的基因表达数据对肺癌分期进行分类,总体准确率达到82%。这些发现证明了基因表达分析和机器学习技术在提高肺癌分期预测准确性、帮助个性化治疗决策方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Lung Cancer Stage by Expressions of Protein-Encoding Genes
Predicting the stages of cancer accurately is crucial for effective treatment planning. In this study, we aimed to develop a model using gene expression data and XGBoost (eXtreme Gradient Boosting) that include clinical and demographic variables to predict specific lung cancer stages in patients. By conducting the feature selection using the Wilcoxon Rank Test, we picked the most impactful genes associated with lung cancer stage prediction. Our model achieved an overall accuracy of 82% in classifying lung cancer stages according to patients’ gene expression data. These findings demonstrate the potential of gene expression analysis and machine learning techniques in improving the accuracy of lung cancer stage prediction, aiding in personalized treatment decisions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
851
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信