印度平价商店消费者可携性随机访问模式预测

IF 1.1 Q3 INFORMATION SCIENCE & LIBRARY SCIENCE
A. Sasi, Thiruselvan Subramanian
{"title":"印度平价商店消费者可携性随机访问模式预测","authors":"A. Sasi, Thiruselvan Subramanian","doi":"10.47974/jios-1364","DOIUrl":null,"url":null,"abstract":"In India, the Public Distribution System (PDS) is a critical tool for accomplishing the aim of “Zero Hunger”. Despite the enormous resources used, PDS has several inefficiencies that are caused by the monopoly of agents engaged in last-mile grain supply. Various state governments in India have been employing portability as an innovative solution to address this problem. In this article, we examined a huge-scale data on the deployment of portable beneficiaries arriving in a particular FPS of Kerala state in India over three years. A comparison is made between Auto-Regressive Integrated Moving Average (ARIMA) method which makes forecasts in univariate data and ARIMA with exogenous variables called ARIMAX. We followed Mean Absolute Percentage Error (MAPE) and Mean Absolute Deviation (MAD) as the accuracy performance measure of the models and observed that the ARIMAX model outperforms the ARIMA model with the least forecasting errors.","PeriodicalId":46518,"journal":{"name":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting stochastic consumer portability visitation pattern in fair price shops of India\",\"authors\":\"A. Sasi, Thiruselvan Subramanian\",\"doi\":\"10.47974/jios-1364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In India, the Public Distribution System (PDS) is a critical tool for accomplishing the aim of “Zero Hunger”. Despite the enormous resources used, PDS has several inefficiencies that are caused by the monopoly of agents engaged in last-mile grain supply. Various state governments in India have been employing portability as an innovative solution to address this problem. In this article, we examined a huge-scale data on the deployment of portable beneficiaries arriving in a particular FPS of Kerala state in India over three years. A comparison is made between Auto-Regressive Integrated Moving Average (ARIMA) method which makes forecasts in univariate data and ARIMA with exogenous variables called ARIMAX. We followed Mean Absolute Percentage Error (MAPE) and Mean Absolute Deviation (MAD) as the accuracy performance measure of the models and observed that the ARIMAX model outperforms the ARIMA model with the least forecasting errors.\",\"PeriodicalId\":46518,\"journal\":{\"name\":\"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47974/jios-1364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47974/jios-1364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在印度,公共分配系统(PDS)是实现“零饥饿”目标的关键工具。尽管使用了大量的资源,但由于从事最后一英里粮食供应的代理商的垄断,PDS存在一些效率低下的问题。印度各邦政府一直在采用可移植性作为解决这一问题的创新解决方案。在这篇文章中,我们研究了印度喀拉拉邦一个特定FPS在三年内部署便携式受益人的大规模数据。比较了对单变量数据进行预测的自回归综合移动平均(ARIMA)方法和对外生变量进行预测的ARIMA方法。我们采用平均绝对百分比误差(MAPE)和平均绝对偏差(MAD)作为模型的精度性能指标,观察到ARIMAX模型以最小的预测误差优于ARIMA模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting stochastic consumer portability visitation pattern in fair price shops of India
In India, the Public Distribution System (PDS) is a critical tool for accomplishing the aim of “Zero Hunger”. Despite the enormous resources used, PDS has several inefficiencies that are caused by the monopoly of agents engaged in last-mile grain supply. Various state governments in India have been employing portability as an innovative solution to address this problem. In this article, we examined a huge-scale data on the deployment of portable beneficiaries arriving in a particular FPS of Kerala state in India over three years. A comparison is made between Auto-Regressive Integrated Moving Average (ARIMA) method which makes forecasts in univariate data and ARIMA with exogenous variables called ARIMAX. We followed Mean Absolute Percentage Error (MAPE) and Mean Absolute Deviation (MAD) as the accuracy performance measure of the models and observed that the ARIMAX model outperforms the ARIMA model with the least forecasting errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES INFORMATION SCIENCE & LIBRARY SCIENCE-
自引率
21.40%
发文量
88
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信