基于知识、内容和协同过滤的在线社交语义网络推荐系统

IF 1.1 Q3 INFORMATION SCIENCE & LIBRARY SCIENCE
Monika Chhikara, S. K. Malik
{"title":"基于知识、内容和协同过滤的在线社交语义网络推荐系统","authors":"Monika Chhikara, S. K. Malik","doi":"10.47974/jios-1356","DOIUrl":null,"url":null,"abstract":"Recommendation systems are a very popular service whose accuracy and sophistication keeps increasing every day. Yet current systems pose a limitation on personalized user recommendation, which we wish to improve. We are developing Content-Based, Collaborative Filtering and Knowledge-Based models and we wish to find the most appropriate approach to build restaurant recommendation systems. We followed steps that involved a pipeline to process reviews of restaurants obtained from a widely used online network of zomato users (India’s largest restaurant service) and calculate ratings of restaurants from reviews. Using a machine learning technique, it continuously analyses user restaurant visit patterns.","PeriodicalId":46518,"journal":{"name":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A recommendation system for online social semantic network using knowledge based, content based and collaborative filtering\",\"authors\":\"Monika Chhikara, S. K. Malik\",\"doi\":\"10.47974/jios-1356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommendation systems are a very popular service whose accuracy and sophistication keeps increasing every day. Yet current systems pose a limitation on personalized user recommendation, which we wish to improve. We are developing Content-Based, Collaborative Filtering and Knowledge-Based models and we wish to find the most appropriate approach to build restaurant recommendation systems. We followed steps that involved a pipeline to process reviews of restaurants obtained from a widely used online network of zomato users (India’s largest restaurant service) and calculate ratings of restaurants from reviews. Using a machine learning technique, it continuously analyses user restaurant visit patterns.\",\"PeriodicalId\":46518,\"journal\":{\"name\":\"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47974/jios-1356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47974/jios-1356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

推荐系统是一项非常受欢迎的服务,其准确性和复杂性每天都在不断提高。然而,目前的系统对个性化用户推荐存在限制,我们希望改进这一点。我们正在开发基于内容、协同过滤和基于知识的模型,我们希望找到最合适的方法来构建餐厅推荐系统。我们遵循的步骤包括处理从广泛使用的zomato用户在线网络(印度最大的餐厅服务)获得的餐馆评论的管道,并根据评论计算餐馆的评级。它使用机器学习技术,持续分析用户的餐厅访问模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A recommendation system for online social semantic network using knowledge based, content based and collaborative filtering
Recommendation systems are a very popular service whose accuracy and sophistication keeps increasing every day. Yet current systems pose a limitation on personalized user recommendation, which we wish to improve. We are developing Content-Based, Collaborative Filtering and Knowledge-Based models and we wish to find the most appropriate approach to build restaurant recommendation systems. We followed steps that involved a pipeline to process reviews of restaurants obtained from a widely used online network of zomato users (India’s largest restaurant service) and calculate ratings of restaurants from reviews. Using a machine learning technique, it continuously analyses user restaurant visit patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES INFORMATION SCIENCE & LIBRARY SCIENCE-
自引率
21.40%
发文量
88
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信