非平稳小波在心电信号分类中的应用

IF 1.1 Q3 INFORMATION SCIENCE & LIBRARY SCIENCE
Abdelmalik Boussaad, K. Melkemi, F. Melgani, Z. Mokhtari
{"title":"非平稳小波在心电信号分类中的应用","authors":"Abdelmalik Boussaad, K. Melkemi, F. Melgani, Z. Mokhtari","doi":"10.47974/jios-1128","DOIUrl":null,"url":null,"abstract":"Wavelet analysis has shown to be an interesting tool for representing ECG signals for classification. In this paper, we present a new ECG signal representation based on the notion of non-stationary wavelets. The main difference with the construction of standard wavelets is that the multiresolution spaces are generated by scale-dependent functions in order to achieve increased flexibility and sparseness. In order to customize the non-stationary wavelet to the given ECG classification task, we resort to the fireworks optimization algorithm, thus making the proposed method general and not constrained by the choice of a particular classifier. The proposed method is validated on AAMI classes of the well-known MIT data set. Results compared to standard stationary wavelets show a significant boost in accuracy.","PeriodicalId":46518,"journal":{"name":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-stationary wavelet for ECG signal classification\",\"authors\":\"Abdelmalik Boussaad, K. Melkemi, F. Melgani, Z. Mokhtari\",\"doi\":\"10.47974/jios-1128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wavelet analysis has shown to be an interesting tool for representing ECG signals for classification. In this paper, we present a new ECG signal representation based on the notion of non-stationary wavelets. The main difference with the construction of standard wavelets is that the multiresolution spaces are generated by scale-dependent functions in order to achieve increased flexibility and sparseness. In order to customize the non-stationary wavelet to the given ECG classification task, we resort to the fireworks optimization algorithm, thus making the proposed method general and not constrained by the choice of a particular classifier. The proposed method is validated on AAMI classes of the well-known MIT data set. Results compared to standard stationary wavelets show a significant boost in accuracy.\",\"PeriodicalId\":46518,\"journal\":{\"name\":\"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47974/jios-1128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47974/jios-1128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

小波分析已被证明是一个有趣的工具,表示心电信号进行分类。本文基于非平稳小波的概念提出了一种新的心电信号表示方法。与标准小波构造的主要区别在于,多分辨率空间是由尺度相关函数生成的,以实现更大的灵活性和稀疏性。为了针对给定的心电分类任务定制非平稳小波,我们采用烟花优化算法,从而使所提出的方法具有通用性,而不受特定分类器选择的限制。该方法在著名的MIT数据集的AAMI类上得到了验证。与标准平稳小波相比,结果显示精度有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-stationary wavelet for ECG signal classification
Wavelet analysis has shown to be an interesting tool for representing ECG signals for classification. In this paper, we present a new ECG signal representation based on the notion of non-stationary wavelets. The main difference with the construction of standard wavelets is that the multiresolution spaces are generated by scale-dependent functions in order to achieve increased flexibility and sparseness. In order to customize the non-stationary wavelet to the given ECG classification task, we resort to the fireworks optimization algorithm, thus making the proposed method general and not constrained by the choice of a particular classifier. The proposed method is validated on AAMI classes of the well-known MIT data set. Results compared to standard stationary wavelets show a significant boost in accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES INFORMATION SCIENCE & LIBRARY SCIENCE-
自引率
21.40%
发文量
88
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信