D. K. Saini, Sonali Kishore Pawar, S. P. Tondare, Anuradha S. Nigade, J. Morbale, Mohit Gangwar
{"title":"利用机器学习算法改进智能医疗系统中多体传感器分析的QoS","authors":"D. K. Saini, Sonali Kishore Pawar, S. P. Tondare, Anuradha S. Nigade, J. Morbale, Mohit Gangwar","doi":"10.47974/jim-1670","DOIUrl":null,"url":null,"abstract":"Embracing significant learning methods for human lead affirmation has shown suitable in taking out discriminants from the coarse information packs obtained from body-mounted sensors. But human headway is ideal coded in a movement of moderate models, the standard AI strategy is to finished certification obligations without taking advantage of the normal relationship between analysis information tests. This paper proposes the use of (DRNN) to manufacture a psychological model that can get critical distance conditions with factor-length input position. We present unidirectional, bidirectional, and comfortable models concerning DRNNs with LSTM and finding parameters using sporadic benchmark datasets. Exploratory results show that the proposed model is superior to a standard AI-based system. SVM and Nearest Neighbour Method (KNN). Moreover, In this Paper implementation smart system runs in tendency to other significant learning techniques like Deep Trust Organization (DBN) and CNN. Human Action Acknowledgment (HAR) assignments were consistently made using arranged highlights got by heuristic cycles.","PeriodicalId":46278,"journal":{"name":"JOURNAL OF INTERDISCIPLINARY MATHEMATICS","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improve QoS for multi-body sensor analytics in smart healthcare system using machine learning algorithm\",\"authors\":\"D. K. Saini, Sonali Kishore Pawar, S. P. Tondare, Anuradha S. Nigade, J. Morbale, Mohit Gangwar\",\"doi\":\"10.47974/jim-1670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Embracing significant learning methods for human lead affirmation has shown suitable in taking out discriminants from the coarse information packs obtained from body-mounted sensors. But human headway is ideal coded in a movement of moderate models, the standard AI strategy is to finished certification obligations without taking advantage of the normal relationship between analysis information tests. This paper proposes the use of (DRNN) to manufacture a psychological model that can get critical distance conditions with factor-length input position. We present unidirectional, bidirectional, and comfortable models concerning DRNNs with LSTM and finding parameters using sporadic benchmark datasets. Exploratory results show that the proposed model is superior to a standard AI-based system. SVM and Nearest Neighbour Method (KNN). Moreover, In this Paper implementation smart system runs in tendency to other significant learning techniques like Deep Trust Organization (DBN) and CNN. Human Action Acknowledgment (HAR) assignments were consistently made using arranged highlights got by heuristic cycles.\",\"PeriodicalId\":46278,\"journal\":{\"name\":\"JOURNAL OF INTERDISCIPLINARY MATHEMATICS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF INTERDISCIPLINARY MATHEMATICS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47974/jim-1670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INTERDISCIPLINARY MATHEMATICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47974/jim-1670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Improve QoS for multi-body sensor analytics in smart healthcare system using machine learning algorithm
Embracing significant learning methods for human lead affirmation has shown suitable in taking out discriminants from the coarse information packs obtained from body-mounted sensors. But human headway is ideal coded in a movement of moderate models, the standard AI strategy is to finished certification obligations without taking advantage of the normal relationship between analysis information tests. This paper proposes the use of (DRNN) to manufacture a psychological model that can get critical distance conditions with factor-length input position. We present unidirectional, bidirectional, and comfortable models concerning DRNNs with LSTM and finding parameters using sporadic benchmark datasets. Exploratory results show that the proposed model is superior to a standard AI-based system. SVM and Nearest Neighbour Method (KNN). Moreover, In this Paper implementation smart system runs in tendency to other significant learning techniques like Deep Trust Organization (DBN) and CNN. Human Action Acknowledgment (HAR) assignments were consistently made using arranged highlights got by heuristic cycles.
期刊介绍:
The Journal of Interdisciplinary Mathematics (JIM) is a world leading journal publishing high quality, rigorously peer-reviewed original research in mathematical applications to different disciplines, and to the methodological and theoretical role of mathematics in underpinning all scientific disciplines. The scope is intentionally broad, but papers must make a novel contribution to the fields covered in order to be considered for publication. Topics include, but are not limited, to the following: • Interface of Mathematics with other Disciplines • Theoretical Role of Mathematics • Methodological Role of Mathematics • Interface of Statistics with other Disciplines • Cognitive Sciences • Applications of Mathematics • Industrial Mathematics • Dynamical Systems • Mathematical Biology • Fuzzy Mathematics The journal considers original research articles, survey articles, and book reviews for publication. Responses to articles and correspondence will also be considered at the Editor-in-Chief’s discretion. Special issue proposals in cutting-edge and timely areas of research in interdisciplinary mathematical research are encouraged – please contact the Editor-in-Chief in the first instance.