Adel Almalki, Y. M. Alawaideh, B. M. Al-Khamiseh, Samer Alawaideh
{"title":"用分数阶导数求解广义麦克斯韦电动力学的Hamilton公式","authors":"Adel Almalki, Y. M. Alawaideh, B. M. Al-Khamiseh, Samer Alawaideh","doi":"10.47974/jim-1594","DOIUrl":null,"url":null,"abstract":"A comparative analysis of the Hamiltonian and Lagrangian equations for the Maxwell field was conducted, and it was demonstrated that both methods are equivalent. Dirac’s and Euler’s techniques were employed to handle the Hamiltonian approach. Additionally, a novel fractional Hamilton formulation was developed for the Maxwell field using fractional derivatives. This formulation yielded a fractional Riemann-Liouville derivative operator and a fractional Hamilton function in terms of the variables Ai, Aj, and A0. The effectiveness of this approach was verified by employing it to examine Maxwell’s electrodynamic equation, and the results obtained were in perfect agreement, confirming the validity of the study","PeriodicalId":46278,"journal":{"name":"JOURNAL OF INTERDISCIPLINARY MATHEMATICS","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hamilton formulation for the electrodynamics of generalized maxwell using fractional derivatives\",\"authors\":\"Adel Almalki, Y. M. Alawaideh, B. M. Al-Khamiseh, Samer Alawaideh\",\"doi\":\"10.47974/jim-1594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A comparative analysis of the Hamiltonian and Lagrangian equations for the Maxwell field was conducted, and it was demonstrated that both methods are equivalent. Dirac’s and Euler’s techniques were employed to handle the Hamiltonian approach. Additionally, a novel fractional Hamilton formulation was developed for the Maxwell field using fractional derivatives. This formulation yielded a fractional Riemann-Liouville derivative operator and a fractional Hamilton function in terms of the variables Ai, Aj, and A0. The effectiveness of this approach was verified by employing it to examine Maxwell’s electrodynamic equation, and the results obtained were in perfect agreement, confirming the validity of the study\",\"PeriodicalId\":46278,\"journal\":{\"name\":\"JOURNAL OF INTERDISCIPLINARY MATHEMATICS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF INTERDISCIPLINARY MATHEMATICS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47974/jim-1594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INTERDISCIPLINARY MATHEMATICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47974/jim-1594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Hamilton formulation for the electrodynamics of generalized maxwell using fractional derivatives
A comparative analysis of the Hamiltonian and Lagrangian equations for the Maxwell field was conducted, and it was demonstrated that both methods are equivalent. Dirac’s and Euler’s techniques were employed to handle the Hamiltonian approach. Additionally, a novel fractional Hamilton formulation was developed for the Maxwell field using fractional derivatives. This formulation yielded a fractional Riemann-Liouville derivative operator and a fractional Hamilton function in terms of the variables Ai, Aj, and A0. The effectiveness of this approach was verified by employing it to examine Maxwell’s electrodynamic equation, and the results obtained were in perfect agreement, confirming the validity of the study
期刊介绍:
The Journal of Interdisciplinary Mathematics (JIM) is a world leading journal publishing high quality, rigorously peer-reviewed original research in mathematical applications to different disciplines, and to the methodological and theoretical role of mathematics in underpinning all scientific disciplines. The scope is intentionally broad, but papers must make a novel contribution to the fields covered in order to be considered for publication. Topics include, but are not limited, to the following: • Interface of Mathematics with other Disciplines • Theoretical Role of Mathematics • Methodological Role of Mathematics • Interface of Statistics with other Disciplines • Cognitive Sciences • Applications of Mathematics • Industrial Mathematics • Dynamical Systems • Mathematical Biology • Fuzzy Mathematics The journal considers original research articles, survey articles, and book reviews for publication. Responses to articles and correspondence will also be considered at the Editor-in-Chief’s discretion. Special issue proposals in cutting-edge and timely areas of research in interdisciplinary mathematical research are encouraged – please contact the Editor-in-Chief in the first instance.