具有非线性边界条件的半线性热方程上爆率和下爆率估计

IF 1.1 Q1 MATHEMATICS
Maan A. Rasheed, M. Chlebík
{"title":"具有非线性边界条件的半线性热方程上爆率和下爆率估计","authors":"Maan A. Rasheed, M. Chlebík","doi":"10.47974/jim-1302","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the blow-up solutions of a semi-linear heat equation with a Neumann boundary condition, where the nonlinear terms, appear in the differential equation and in the boundary conditions, are of exponential types. We study the effect of the nonlinear terms on the last blow-up behavior. Precisely, the upper (lower) blow-up rate estimates are established by using integral equation method and maximum principle techniques. The results show that the presentence of the reaction and boundary terms has important effects on the upper (lower) blow-up rate estimates forms.","PeriodicalId":46278,"journal":{"name":"JOURNAL OF INTERDISCIPLINARY MATHEMATICS","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper and lower blow-up rate estimates of a semilinear heat equation with a nonlinear boundary condition\",\"authors\":\"Maan A. Rasheed, M. Chlebík\",\"doi\":\"10.47974/jim-1302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the blow-up solutions of a semi-linear heat equation with a Neumann boundary condition, where the nonlinear terms, appear in the differential equation and in the boundary conditions, are of exponential types. We study the effect of the nonlinear terms on the last blow-up behavior. Precisely, the upper (lower) blow-up rate estimates are established by using integral equation method and maximum principle techniques. The results show that the presentence of the reaction and boundary terms has important effects on the upper (lower) blow-up rate estimates forms.\",\"PeriodicalId\":46278,\"journal\":{\"name\":\"JOURNAL OF INTERDISCIPLINARY MATHEMATICS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF INTERDISCIPLINARY MATHEMATICS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47974/jim-1302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INTERDISCIPLINARY MATHEMATICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47974/jim-1302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了一类具有Neumann边界条件的半线性热方程的爆破解,其中在微分方程和边界条件中出现的非线性项为指数型。研究了非线性项对最后爆破行为的影响。准确地说,利用积分方程法和极大原理技术建立了上(下)爆破率估计。结果表明,反应和边界项的存在对上(下)爆破速率估计形式有重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Upper and lower blow-up rate estimates of a semilinear heat equation with a nonlinear boundary condition
In this paper, we consider the blow-up solutions of a semi-linear heat equation with a Neumann boundary condition, where the nonlinear terms, appear in the differential equation and in the boundary conditions, are of exponential types. We study the effect of the nonlinear terms on the last blow-up behavior. Precisely, the upper (lower) blow-up rate estimates are established by using integral equation method and maximum principle techniques. The results show that the presentence of the reaction and boundary terms has important effects on the upper (lower) blow-up rate estimates forms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
23.50%
发文量
141
期刊介绍: The Journal of Interdisciplinary Mathematics (JIM) is a world leading journal publishing high quality, rigorously peer-reviewed original research in mathematical applications to different disciplines, and to the methodological and theoretical role of mathematics in underpinning all scientific disciplines. The scope is intentionally broad, but papers must make a novel contribution to the fields covered in order to be considered for publication. Topics include, but are not limited, to the following: • Interface of Mathematics with other Disciplines • Theoretical Role of Mathematics • Methodological Role of Mathematics • Interface of Statistics with other Disciplines • Cognitive Sciences • Applications of Mathematics • Industrial Mathematics • Dynamical Systems • Mathematical Biology • Fuzzy Mathematics The journal considers original research articles, survey articles, and book reviews for publication. Responses to articles and correspondence will also be considered at the Editor-in-Chief’s discretion. Special issue proposals in cutting-edge and timely areas of research in interdisciplinary mathematical research are encouraged – please contact the Editor-in-Chief in the first instance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信