Sudhakar Sengan, O. Khalaf, Vidya Sagar P., D. Sharma, Arokia Jesu Prabhu L., A. A. Hamad
{"title":"使用机器学习方法在电子医疗数据上为医疗保健系统提供安全且基于隐私的IDS","authors":"Sudhakar Sengan, O. Khalaf, Vidya Sagar P., D. Sharma, Arokia Jesu Prabhu L., A. A. Hamad","doi":"10.4018/ijrqeh.289175","DOIUrl":null,"url":null,"abstract":"Existing methods use static path identifiers, making it easy for attackers to conduct DDoS flooding attacks. Create a system using Dynamic Secure aware Routing by Machine Learning (DAR-ML) to solve healthcare data. A DoS detection system by ML algorithm is proposed in this paper. First, to access the user to see the authorized process. Next, after the user registration, users can compare path information through correlation factors between nodes. Then, choose the device that will automatically activate and decrypt the data key. The DAR-ML is traced back to all healthcare data in the end module. In the next module, the users and admin can describe the results. These are the outcomes of using the network to make it easy. Through a time interval of 21.19% of data traffic, the findings demonstrate an attack detection accuracy of over 98.19%, with high precision and a probability of false alarm.","PeriodicalId":36298,"journal":{"name":"International Journal of Reliable and Quality E-Healthcare","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Secured and Privacy-Based IDS for Healthcare Systems on E-Medical Data Using Machine Learning Approach\",\"authors\":\"Sudhakar Sengan, O. Khalaf, Vidya Sagar P., D. Sharma, Arokia Jesu Prabhu L., A. A. Hamad\",\"doi\":\"10.4018/ijrqeh.289175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing methods use static path identifiers, making it easy for attackers to conduct DDoS flooding attacks. Create a system using Dynamic Secure aware Routing by Machine Learning (DAR-ML) to solve healthcare data. A DoS detection system by ML algorithm is proposed in this paper. First, to access the user to see the authorized process. Next, after the user registration, users can compare path information through correlation factors between nodes. Then, choose the device that will automatically activate and decrypt the data key. The DAR-ML is traced back to all healthcare data in the end module. In the next module, the users and admin can describe the results. These are the outcomes of using the network to make it easy. Through a time interval of 21.19% of data traffic, the findings demonstrate an attack detection accuracy of over 98.19%, with high precision and a probability of false alarm.\",\"PeriodicalId\":36298,\"journal\":{\"name\":\"International Journal of Reliable and Quality E-Healthcare\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Reliable and Quality E-Healthcare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijrqeh.289175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Nursing\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reliable and Quality E-Healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijrqeh.289175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Nursing","Score":null,"Total":0}
Secured and Privacy-Based IDS for Healthcare Systems on E-Medical Data Using Machine Learning Approach
Existing methods use static path identifiers, making it easy for attackers to conduct DDoS flooding attacks. Create a system using Dynamic Secure aware Routing by Machine Learning (DAR-ML) to solve healthcare data. A DoS detection system by ML algorithm is proposed in this paper. First, to access the user to see the authorized process. Next, after the user registration, users can compare path information through correlation factors between nodes. Then, choose the device that will automatically activate and decrypt the data key. The DAR-ML is traced back to all healthcare data in the end module. In the next module, the users and admin can describe the results. These are the outcomes of using the network to make it easy. Through a time interval of 21.19% of data traffic, the findings demonstrate an attack detection accuracy of over 98.19%, with high precision and a probability of false alarm.