{"title":"基于同构集成技术的有效入侵检测系统","authors":"F. Masoodi, Iram Abrar, A. Bamhdi","doi":"10.4018/ijisp.2022010112","DOIUrl":null,"url":null,"abstract":"In this work, homogeneous ensemble techniques, namely bagging and boosting were employed for intrusion detection to determine the intrusive activities in network by monitoring the network traffic. Simultaneously, model diversity was enhanced as numerous algorithms were taken into account, thereby leading to an increase in the detection rate Several classifiers, i.e., SVM, KNN, RF, ETC and MLP) were used in case of bagging approach. Likewise, tree-based classifiers have been employed for boosting. The proposed model was tested on NSL-KDD dataset that was initially subjected to preprocessing. Accordingly, ten most significant features were identified using decision tree and recursive feature elimination method. Furthermore, the dataset was divided into five subsets, each one them being subjected to training, and the final results were obtained based on majority voting. Experimental results proved that the model was effective for detecting intrusive activities. Bagged ETC and boosted RF outperformed all the other classifiers with an accuracy of 99.123% and 99.309%, respectively.","PeriodicalId":44332,"journal":{"name":"International Journal of Information Security and Privacy","volume":"16 1","pages":"1-18"},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Effective Intrusion Detection System Using Homogeneous Ensemble Techniques\",\"authors\":\"F. Masoodi, Iram Abrar, A. Bamhdi\",\"doi\":\"10.4018/ijisp.2022010112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, homogeneous ensemble techniques, namely bagging and boosting were employed for intrusion detection to determine the intrusive activities in network by monitoring the network traffic. Simultaneously, model diversity was enhanced as numerous algorithms were taken into account, thereby leading to an increase in the detection rate Several classifiers, i.e., SVM, KNN, RF, ETC and MLP) were used in case of bagging approach. Likewise, tree-based classifiers have been employed for boosting. The proposed model was tested on NSL-KDD dataset that was initially subjected to preprocessing. Accordingly, ten most significant features were identified using decision tree and recursive feature elimination method. Furthermore, the dataset was divided into five subsets, each one them being subjected to training, and the final results were obtained based on majority voting. Experimental results proved that the model was effective for detecting intrusive activities. Bagged ETC and boosted RF outperformed all the other classifiers with an accuracy of 99.123% and 99.309%, respectively.\",\"PeriodicalId\":44332,\"journal\":{\"name\":\"International Journal of Information Security and Privacy\",\"volume\":\"16 1\",\"pages\":\"1-18\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Security and Privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijisp.2022010112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijisp.2022010112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
An Effective Intrusion Detection System Using Homogeneous Ensemble Techniques
In this work, homogeneous ensemble techniques, namely bagging and boosting were employed for intrusion detection to determine the intrusive activities in network by monitoring the network traffic. Simultaneously, model diversity was enhanced as numerous algorithms were taken into account, thereby leading to an increase in the detection rate Several classifiers, i.e., SVM, KNN, RF, ETC and MLP) were used in case of bagging approach. Likewise, tree-based classifiers have been employed for boosting. The proposed model was tested on NSL-KDD dataset that was initially subjected to preprocessing. Accordingly, ten most significant features were identified using decision tree and recursive feature elimination method. Furthermore, the dataset was divided into five subsets, each one them being subjected to training, and the final results were obtained based on majority voting. Experimental results proved that the model was effective for detecting intrusive activities. Bagged ETC and boosted RF outperformed all the other classifiers with an accuracy of 99.123% and 99.309%, respectively.
期刊介绍:
As information technology and the Internet become more and more ubiquitous and pervasive in our daily lives, there is an essential need for a more thorough understanding of information security and privacy issues and concerns. The International Journal of Information Security and Privacy (IJISP) creates and fosters a forum where research in the theory and practice of information security and privacy is advanced. IJISP publishes high quality papers dealing with a wide range of issues, ranging from technical, legal, regulatory, organizational, managerial, cultural, ethical and human aspects of information security and privacy, through a balanced mix of theoretical and empirical research articles, case studies, book reviews, tutorials, and editorials. This journal encourages submission of manuscripts that present research frameworks, methods, methodologies, theory development and validation, case studies, simulation results and analysis, technological architectures, infrastructure issues in design, and implementation and maintenance of secure and privacy preserving initiatives.