{"title":"联机数据库中底栖有孔虫的自动分类和系统搜索","authors":"A. Amao","doi":"10.47894/mpal.67.6.06","DOIUrl":null,"url":null,"abstract":"Recent advances in the applications of deep neural networks in computer vision tasks such as image classification has seen a tremendous surge in interest. Several image classification algorithms can now be leveraged in automating some tedious tasks associated with benthic foraminifera research especially in sample picking, taxonomy and systematics. In this study, a small image identification model was built with 414 SEM micrographs representing twenty-one species of benthic foraminifera, using a convolutional neural network which achieved 84% model accuracy and 75% validation accuracy on previously unseen images. The model was also deployed through a web application to demonstrate how it may be useful in augmenting online databases such as the Ellis Messina catalogue and the World Register of Marine Species. These services although very valuable, can be modernized with image search functionalities to enhance their perpetual usefulness and continuity.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automating taxonomic and systematic search of benthic foraminifera in an online database\",\"authors\":\"A. Amao\",\"doi\":\"10.47894/mpal.67.6.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in the applications of deep neural networks in computer vision tasks such as image classification has seen a tremendous surge in interest. Several image classification algorithms can now be leveraged in automating some tedious tasks associated with benthic foraminifera research especially in sample picking, taxonomy and systematics. In this study, a small image identification model was built with 414 SEM micrographs representing twenty-one species of benthic foraminifera, using a convolutional neural network which achieved 84% model accuracy and 75% validation accuracy on previously unseen images. The model was also deployed through a web application to demonstrate how it may be useful in augmenting online databases such as the Ellis Messina catalogue and the World Register of Marine Species. These services although very valuable, can be modernized with image search functionalities to enhance their perpetual usefulness and continuity.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.47894/mpal.67.6.06\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.47894/mpal.67.6.06","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Automating taxonomic and systematic search of benthic foraminifera in an online database
Recent advances in the applications of deep neural networks in computer vision tasks such as image classification has seen a tremendous surge in interest. Several image classification algorithms can now be leveraged in automating some tedious tasks associated with benthic foraminifera research especially in sample picking, taxonomy and systematics. In this study, a small image identification model was built with 414 SEM micrographs representing twenty-one species of benthic foraminifera, using a convolutional neural network which achieved 84% model accuracy and 75% validation accuracy on previously unseen images. The model was also deployed through a web application to demonstrate how it may be useful in augmenting online databases such as the Ellis Messina catalogue and the World Register of Marine Species. These services although very valuable, can be modernized with image search functionalities to enhance their perpetual usefulness and continuity.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.