黎曼流形切束上一类新的黎曼度量

IF 0.5 Q3 MATHEMATICS
A. Baghban, Saeed Hashemi Sababe
{"title":"黎曼流形切束上一类新的黎曼度量","authors":"A. Baghban, Saeed Hashemi Sababe","doi":"10.4134/CKMS.C200114","DOIUrl":null,"url":null,"abstract":"The class of isotropic almost complex structures, Jδ,σ , define a class of Riemannian metrics, gδ,σ , on the tangent bundle of a Riemannian manifold which are a generalization of the Sasaki metric. This paper characterizes the metrics gδ,0 using the geometry of tangent bundle. As a by-product, some integrability results will be reported for Jδ,σ .","PeriodicalId":45637,"journal":{"name":"Communications of the Korean Mathematical Society","volume":"35 1","pages":"1255-1267"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A NEW CLASS OF RIEMANNIAN METRICS ON TANGENT BUNDLE OF A RIEMANNIAN MANIFOLD\",\"authors\":\"A. Baghban, Saeed Hashemi Sababe\",\"doi\":\"10.4134/CKMS.C200114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The class of isotropic almost complex structures, Jδ,σ , define a class of Riemannian metrics, gδ,σ , on the tangent bundle of a Riemannian manifold which are a generalization of the Sasaki metric. This paper characterizes the metrics gδ,0 using the geometry of tangent bundle. As a by-product, some integrability results will be reported for Jδ,σ .\",\"PeriodicalId\":45637,\"journal\":{\"name\":\"Communications of the Korean Mathematical Society\",\"volume\":\"35 1\",\"pages\":\"1255-1267\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications of the Korean Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4134/CKMS.C200114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications of the Korean Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4134/CKMS.C200114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

一类各向同性几乎复杂结构,Jδ,σ,在黎曼流形的切束上定义了一类黎曼度量,gδ,σ,它们是Sasaki度量的推广。本文利用切线束的几何特征刻画了度量gδ,0。作为一个副产品,我们将报道Jδ,σ的一些可积性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A NEW CLASS OF RIEMANNIAN METRICS ON TANGENT BUNDLE OF A RIEMANNIAN MANIFOLD
The class of isotropic almost complex structures, Jδ,σ , define a class of Riemannian metrics, gδ,σ , on the tangent bundle of a Riemannian manifold which are a generalization of the Sasaki metric. This paper characterizes the metrics gδ,0 using the geometry of tangent bundle. As a by-product, some integrability results will be reported for Jδ,σ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊介绍: This journal endeavors to publish significant research and survey of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of four issues (January, April, July, October).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信