具有非对称非度量连接(l, m)的不定TRANS-SASAKIAN流形的一般类光子流形

Pub Date : 2020-01-01 DOI:10.4134/CKMS.C200055
Chul Woo Lee, Jae Won Lee
{"title":"具有非对称非度量连接(l, m)的不定TRANS-SASAKIAN流形的一般类光子流形","authors":"Chul Woo Lee, Jae Won Lee","doi":"10.4134/CKMS.C200055","DOIUrl":null,"url":null,"abstract":"Jin [7] defined a new connection on semi-Riemannian manifolds, which is a non-symmetric and non-metric connection. He said that this connection is an (`, m)-type connection. Jin also studied lightlike hypersurfaces of an indefinite trans-Sasakian manifold with an (`,m)type connection in [7]. We study further the geometry of this subject. In this paper, we study generic lightlike submanifolds of an indefinite trans-Sasakian manifold endowed with an (`,m)-type connection.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE TRANS-SASAKIAN MANIFOLD WITH A NON-SYMMETRIC NON-METRIC CONNECTION OF TYPE (ℓ, m)\",\"authors\":\"Chul Woo Lee, Jae Won Lee\",\"doi\":\"10.4134/CKMS.C200055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Jin [7] defined a new connection on semi-Riemannian manifolds, which is a non-symmetric and non-metric connection. He said that this connection is an (`, m)-type connection. Jin also studied lightlike hypersurfaces of an indefinite trans-Sasakian manifold with an (`,m)type connection in [7]. We study further the geometry of this subject. In this paper, we study generic lightlike submanifolds of an indefinite trans-Sasakian manifold endowed with an (`,m)-type connection.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4134/CKMS.C200055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4134/CKMS.C200055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Jin[7]在半黎曼流形上定义了一种新的非对称非度量连接。他说这个连接是(',m)类型的连接。Jin还研究了[7]中具有(',m)型连接的不定trans-Sasakian流形的类光超曲面。我们进一步研究这门学科的几何学。本文研究了具有(',m)型连接的不定反sasaki流形的一般类光子流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE TRANS-SASAKIAN MANIFOLD WITH A NON-SYMMETRIC NON-METRIC CONNECTION OF TYPE (ℓ, m)
Jin [7] defined a new connection on semi-Riemannian manifolds, which is a non-symmetric and non-metric connection. He said that this connection is an (`, m)-type connection. Jin also studied lightlike hypersurfaces of an indefinite trans-Sasakian manifold with an (`,m)type connection in [7]. We study further the geometry of this subject. In this paper, we study generic lightlike submanifolds of an indefinite trans-Sasakian manifold endowed with an (`,m)-type connection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信