{"title":"序列的乘法器加权空间","authors":"L. Bouchikhi, A. Kinani","doi":"10.4134/CKMS.C200040","DOIUrl":null,"url":null,"abstract":"We consider the weighted spaces `p(S, φ) and `p(S, ψ) for 1 < p < +∞, where φ and ψ are weights on S (= N or Z). We obtain a sufficient condition for `p(S, ψ) to be multiplier weighted-space of `p(S, φ) and `p(S, ψ). Our condition characterizes the last multiplier weightedspace in the case where S = Z. As a consequence, in the particular case where ψ = φ, the weighted space `p(Z,ψ) is a convolutive algebra. 1. Preliminaries and introduction Let S (S = N or S = Z) and p ∈ ]1,+∞[. We say that ω is a weight on S if ω : S −→ [1,+∞[, is a map satisfying: ∑ n∈S ω(n) 1 1−p < +∞. We consider the weighted space: `(S, ω) = { (a(n))n∈S ∈ C S : ∑ n∈S |a(n)| ω(n) < +∞ } . Endowed with the norm |·|p,ω defined by: |a|p,ω = (∑ n∈S |a(n)| ω(n) ) 1 p for every (a(n))n∈S ∈ ` (S, ω), the space `(S,ω) becomes a Banach subspace of ` (S). We say that the weight ω is m-convolutive if a positive constant γ = γ(ω) exists such that: ω 1 1−p ∗ ω 1 1−p ≤ γ ω 1 1−p , where ∗ denotes the convolution product. If a= (a(n))n∈S ∈ `(S, ω), we define the complex function F(a) by F(a)(t) = ∑ n∈S a(n)e for every t ∈ R. Received February 6, 2020; Revised April 8, 2020; Accepted July 2, 2020. 2010 Mathematics Subject Classification. 46J10, 46H30.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON MULTIPLIER WEIGHTED-SPACE OF SEQUENCES\",\"authors\":\"L. Bouchikhi, A. Kinani\",\"doi\":\"10.4134/CKMS.C200040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the weighted spaces `p(S, φ) and `p(S, ψ) for 1 < p < +∞, where φ and ψ are weights on S (= N or Z). We obtain a sufficient condition for `p(S, ψ) to be multiplier weighted-space of `p(S, φ) and `p(S, ψ). Our condition characterizes the last multiplier weightedspace in the case where S = Z. As a consequence, in the particular case where ψ = φ, the weighted space `p(Z,ψ) is a convolutive algebra. 1. Preliminaries and introduction Let S (S = N or S = Z) and p ∈ ]1,+∞[. We say that ω is a weight on S if ω : S −→ [1,+∞[, is a map satisfying: ∑ n∈S ω(n) 1 1−p < +∞. We consider the weighted space: `(S, ω) = { (a(n))n∈S ∈ C S : ∑ n∈S |a(n)| ω(n) < +∞ } . Endowed with the norm |·|p,ω defined by: |a|p,ω = (∑ n∈S |a(n)| ω(n) ) 1 p for every (a(n))n∈S ∈ ` (S, ω), the space `(S,ω) becomes a Banach subspace of ` (S). We say that the weight ω is m-convolutive if a positive constant γ = γ(ω) exists such that: ω 1 1−p ∗ ω 1 1−p ≤ γ ω 1 1−p , where ∗ denotes the convolution product. If a= (a(n))n∈S ∈ `(S, ω), we define the complex function F(a) by F(a)(t) = ∑ n∈S a(n)e for every t ∈ R. Received February 6, 2020; Revised April 8, 2020; Accepted July 2, 2020. 2010 Mathematics Subject Classification. 46J10, 46H30.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4134/CKMS.C200040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4134/CKMS.C200040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider the weighted spaces `p(S, φ) and `p(S, ψ) for 1 < p < +∞, where φ and ψ are weights on S (= N or Z). We obtain a sufficient condition for `p(S, ψ) to be multiplier weighted-space of `p(S, φ) and `p(S, ψ). Our condition characterizes the last multiplier weightedspace in the case where S = Z. As a consequence, in the particular case where ψ = φ, the weighted space `p(Z,ψ) is a convolutive algebra. 1. Preliminaries and introduction Let S (S = N or S = Z) and p ∈ ]1,+∞[. We say that ω is a weight on S if ω : S −→ [1,+∞[, is a map satisfying: ∑ n∈S ω(n) 1 1−p < +∞. We consider the weighted space: `(S, ω) = { (a(n))n∈S ∈ C S : ∑ n∈S |a(n)| ω(n) < +∞ } . Endowed with the norm |·|p,ω defined by: |a|p,ω = (∑ n∈S |a(n)| ω(n) ) 1 p for every (a(n))n∈S ∈ ` (S, ω), the space `(S,ω) becomes a Banach subspace of ` (S). We say that the weight ω is m-convolutive if a positive constant γ = γ(ω) exists such that: ω 1 1−p ∗ ω 1 1−p ≤ γ ω 1 1−p , where ∗ denotes the convolution product. If a= (a(n))n∈S ∈ `(S, ω), we define the complex function F(a) by F(a)(t) = ∑ n∈S a(n)e for every t ∈ R. Received February 6, 2020; Revised April 8, 2020; Accepted July 2, 2020. 2010 Mathematics Subject Classification. 46J10, 46H30.