关于多子空间-超循环算子

Pub Date : 2020-01-01 DOI:10.4134/CKMS.C200118
M. Moosapoor
{"title":"关于多子空间-超循环算子","authors":"M. Moosapoor","doi":"10.4134/CKMS.C200118","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce and investigate multi subspacehypercyclic operators and prove that multi-hypercyclic operators are multi subspace-hypercyclic. We show that if T is M -hypercyclic or multi M -hypercyclic, then Tn is multi M -hypercyclic for any natural number n and by using this result, make some examples of multi subspacehypercyclic operators. We prove that multi M -hypercyclic operators have somewhere dense orbits in M . We show that analytic Toeplitz operators can not be multi subspace-hypercyclic. Also, we state a sufficient condition for coanalytic Toeplitz operators to be multi subspace-hypercyclic.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On multi subspace-hypercyclic operators\",\"authors\":\"M. Moosapoor\",\"doi\":\"10.4134/CKMS.C200118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce and investigate multi subspacehypercyclic operators and prove that multi-hypercyclic operators are multi subspace-hypercyclic. We show that if T is M -hypercyclic or multi M -hypercyclic, then Tn is multi M -hypercyclic for any natural number n and by using this result, make some examples of multi subspacehypercyclic operators. We prove that multi M -hypercyclic operators have somewhere dense orbits in M . We show that analytic Toeplitz operators can not be multi subspace-hypercyclic. Also, we state a sufficient condition for coanalytic Toeplitz operators to be multi subspace-hypercyclic.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4134/CKMS.C200118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4134/CKMS.C200118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文引入并研究了多子空间超循环算子,证明了多子空间超循环算子是多子空间超循环算子。我们证明了如果T是M -超环或多M -超环,那么对于任意自然数n, Tn是多M -超环,并利用这一结果,给出了多子空间超环算子的一些例子。证明了多M -超循环算子在M中存在某个密集轨道。证明了解析Toeplitz算子不能是多子空间-超循环。并给出了协解析Toeplitz算子是多子空间超循环的一个充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On multi subspace-hypercyclic operators
In this paper, we introduce and investigate multi subspacehypercyclic operators and prove that multi-hypercyclic operators are multi subspace-hypercyclic. We show that if T is M -hypercyclic or multi M -hypercyclic, then Tn is multi M -hypercyclic for any natural number n and by using this result, make some examples of multi subspacehypercyclic operators. We prove that multi M -hypercyclic operators have somewhere dense orbits in M . We show that analytic Toeplitz operators can not be multi subspace-hypercyclic. Also, we state a sufficient condition for coanalytic Toeplitz operators to be multi subspace-hypercyclic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信