关于广义矩阵代数的广义约当导

Pub Date : 2020-01-01 DOI:10.4134/CKMS.C190362
M. Ashraf, A. Jabeen
{"title":"关于广义矩阵代数的广义约当导","authors":"M. Ashraf, A. Jabeen","doi":"10.4134/CKMS.C190362","DOIUrl":null,"url":null,"abstract":"Let R be a commutative ring with unity, A and B be Ralgebras, M be a (A,B)-bimodule and N be a (B,A)-bimodule. The Ralgebra S = S(A,M,N,B) is a generalized matrix algebra defined by the Morita context (A,B,M,N, ξMN,ΩNM). In this article, we study generalized derivation and generalized Jordan derivation on generalized matrix algebras and prove that every generalized Jordan derivation can be written as the sum of a generalized derivation and antiderivation with some limitations. Also, we show that every generalized Jordan derivation is a generalized derivation on trivial generalized matrix algebra over a field.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ON GENERALIZED JORDAN DERIVATIONS OF GENERALIZED MATRIX ALGEBRAS\",\"authors\":\"M. Ashraf, A. Jabeen\",\"doi\":\"10.4134/CKMS.C190362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let R be a commutative ring with unity, A and B be Ralgebras, M be a (A,B)-bimodule and N be a (B,A)-bimodule. The Ralgebra S = S(A,M,N,B) is a generalized matrix algebra defined by the Morita context (A,B,M,N, ξMN,ΩNM). In this article, we study generalized derivation and generalized Jordan derivation on generalized matrix algebras and prove that every generalized Jordan derivation can be written as the sum of a generalized derivation and antiderivation with some limitations. Also, we show that every generalized Jordan derivation is a generalized derivation on trivial generalized matrix algebra over a field.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4134/CKMS.C190362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4134/CKMS.C190362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设R是一个具有单位的交换环,a和B是代数,M是a (a,B)-双模,N是a (B, a)-双模。代数S = S(A,M,N,B)是由Morita上下文(A,B,M,N, ξMN,ΩNM)定义的广义矩阵代数。本文研究了广义矩阵代数上的广义求导和广义Jordan求导,证明了每一个广义Jordan求导都可以写成一个广义求导与一个反求导的和,但有一定的限制。同时,我们证明了每一个广义约当导数都是域上平凡广义矩阵代数上的广义导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
ON GENERALIZED JORDAN DERIVATIONS OF GENERALIZED MATRIX ALGEBRAS
Let R be a commutative ring with unity, A and B be Ralgebras, M be a (A,B)-bimodule and N be a (B,A)-bimodule. The Ralgebra S = S(A,M,N,B) is a generalized matrix algebra defined by the Morita context (A,B,M,N, ξMN,ΩNM). In this article, we study generalized derivation and generalized Jordan derivation on generalized matrix algebras and prove that every generalized Jordan derivation can be written as the sum of a generalized derivation and antiderivation with some limitations. Also, we show that every generalized Jordan derivation is a generalized derivation on trivial generalized matrix algebra over a field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信