有限型Picard群的二阶K(2)$-局域谱

Pub Date : 2022-01-01 DOI:10.4310/hha.2022.v24.n1.a10
Ippei Ichigi, K. Shimomura
{"title":"有限型Picard群的二阶K(2)$-局域谱","authors":"Ippei Ichigi, K. Shimomura","doi":"10.4310/hha.2022.v24.n1.a10","DOIUrl":null,"url":null,"abstract":". Consider Hopkins’ Picard group of the stable homotopy category of E (2)-local spectra at the prime three, consisting of homotopy classes of invertible spectra [1]. Then, it is isomorphic to the direct sum of an in(cid:12)nite cyclic group and two cyclic groups of order three. We consider the Smith-Toda spectrum V (1) and the co(cid:12)ber V 2 of the square (cid:11) 2 of the Adams map, which is a ring spectrum. In this paper, we introduce imaginary elements which make computation clearer, and determine the module structures of the Picard group graded homotopy groups (cid:25) ⋆ ( V (1)) and (cid:25) ⋆ ( V 2 ).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Picard group graded homotopy groups of a finite type two $K(2)$-local spectrum at the prime three\",\"authors\":\"Ippei Ichigi, K. Shimomura\",\"doi\":\"10.4310/hha.2022.v24.n1.a10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Consider Hopkins’ Picard group of the stable homotopy category of E (2)-local spectra at the prime three, consisting of homotopy classes of invertible spectra [1]. Then, it is isomorphic to the direct sum of an in(cid:12)nite cyclic group and two cyclic groups of order three. We consider the Smith-Toda spectrum V (1) and the co(cid:12)ber V 2 of the square (cid:11) 2 of the Adams map, which is a ring spectrum. In this paper, we introduce imaginary elements which make computation clearer, and determine the module structures of the Picard group graded homotopy groups (cid:25) ⋆ ( V (1)) and (cid:25) ⋆ ( V 2 ).\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2022.v24.n1.a10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2022.v24.n1.a10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 考虑由可逆谱[1]的同伦类组成的E(2)的稳定同伦范畴的Hopkins ' Picard群。然后,它同构于一个in(cid:12)非环群与两个3阶环群的直和。我们考虑Smith-Toda谱V(1)和Adams图的正方形(cid:11) 2的co(cid:12)ber V(2),这是一个环谱。本文引入虚元使计算更加清晰,并确定了Picard群梯度同伦群(cid:25) - - (V(1))和(cid:25) - - (v2)的模结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Picard group graded homotopy groups of a finite type two $K(2)$-local spectrum at the prime three
. Consider Hopkins’ Picard group of the stable homotopy category of E (2)-local spectra at the prime three, consisting of homotopy classes of invertible spectra [1]. Then, it is isomorphic to the direct sum of an in(cid:12)nite cyclic group and two cyclic groups of order three. We consider the Smith-Toda spectrum V (1) and the co(cid:12)ber V 2 of the square (cid:11) 2 of the Adams map, which is a ring spectrum. In this paper, we introduce imaginary elements which make computation clearer, and determine the module structures of the Picard group graded homotopy groups (cid:25) ⋆ ( V (1)) and (cid:25) ⋆ ( V 2 ).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信