蛋白质对接和药物设计

Aditi Gangopadhyay, H. Chakraborty, A. Datta
{"title":"蛋白质对接和药物设计","authors":"Aditi Gangopadhyay, H. Chakraborty, A. Datta","doi":"10.4018/978-1-5225-2607-0.CH009","DOIUrl":null,"url":null,"abstract":"Protein docking is integral to structure-based drug design and molecular biology. The recent surge of big data in biology, the demand for personalised medicines, evolving pathogens and increasing lifestyle-associated risks, asks for smart, robust, low-cost and high-throughput drug design. Computer-aided drug design techniques allow rapid screening of ultra-large chemical libraries within minutes. This is immensely necessary to the drug discovery pipeline, which is presently burdened with high attrition rates, failures, huge capital and time investment. With increasing drug resistance and difficult druggable targets, there is a growing need for novel drug scaffolds which is partly satisfied by fragment based drug design and de novo methods. The chapter discusses various aspects of protein docking and emphasises on its application in drug design.","PeriodicalId":93084,"journal":{"name":"Biotechnology (Faisalabad, Pakistan)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protein Docking and Drug Design\",\"authors\":\"Aditi Gangopadhyay, H. Chakraborty, A. Datta\",\"doi\":\"10.4018/978-1-5225-2607-0.CH009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protein docking is integral to structure-based drug design and molecular biology. The recent surge of big data in biology, the demand for personalised medicines, evolving pathogens and increasing lifestyle-associated risks, asks for smart, robust, low-cost and high-throughput drug design. Computer-aided drug design techniques allow rapid screening of ultra-large chemical libraries within minutes. This is immensely necessary to the drug discovery pipeline, which is presently burdened with high attrition rates, failures, huge capital and time investment. With increasing drug resistance and difficult druggable targets, there is a growing need for novel drug scaffolds which is partly satisfied by fragment based drug design and de novo methods. The chapter discusses various aspects of protein docking and emphasises on its application in drug design.\",\"PeriodicalId\":93084,\"journal\":{\"name\":\"Biotechnology (Faisalabad, Pakistan)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology (Faisalabad, Pakistan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-5225-2607-0.CH009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology (Faisalabad, Pakistan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-2607-0.CH009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质对接是基于结构的药物设计和分子生物学的重要组成部分。最近生物学大数据的激增、对个性化药物的需求、病原体的进化以及与生活方式相关的风险的增加,都要求智能、稳健、低成本和高通量的药物设计。计算机辅助药物设计技术可以在几分钟内快速筛选超大型化学文库。这对药物研发渠道来说是非常必要的,因为目前药物研发渠道面临着高流失率、失败率、巨大的资本和时间投入。随着耐药性的增加和药物靶点的困难,对新型药物支架的需求日益增长,基于片段的药物设计和从头开始的方法部分满足了这一需求。本章讨论了蛋白质对接的各个方面,并着重讨论了其在药物设计中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protein Docking and Drug Design
Protein docking is integral to structure-based drug design and molecular biology. The recent surge of big data in biology, the demand for personalised medicines, evolving pathogens and increasing lifestyle-associated risks, asks for smart, robust, low-cost and high-throughput drug design. Computer-aided drug design techniques allow rapid screening of ultra-large chemical libraries within minutes. This is immensely necessary to the drug discovery pipeline, which is presently burdened with high attrition rates, failures, huge capital and time investment. With increasing drug resistance and difficult druggable targets, there is a growing need for novel drug scaffolds which is partly satisfied by fragment based drug design and de novo methods. The chapter discusses various aspects of protein docking and emphasises on its application in drug design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信