{"title":"湿式离合器拖动力矩预测模型研究","authors":"Jibin Hu, Chongbo Jing, Zengxiong Peng, Bin Wang","doi":"10.3901/CJME.2009.02.238","DOIUrl":null,"url":null,"abstract":"Considering the surface tension effect and centrifugal effect, a mathematical model based on Reynolds equation for predicting the drag torque of disengage wet clutches is presented. The model indicates that the equivalent radius is a function of clutch speed and flow rate. The drag torque achieves its peak at a critical speed. Above this speed, drag torque drops due to the shrinking of the oil film. The model also points out that viscosity and flow rate effects on drag torque. Experimental results indicate that the model is reason-able and it performs well for predicting the drag torque peak.","PeriodicalId":39252,"journal":{"name":"Journal of Beijing Institute of Technology (English Edition)","volume":"35 1","pages":"405-409"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Research on Drag Torque Prediction Model for the Wet Clutches\",\"authors\":\"Jibin Hu, Chongbo Jing, Zengxiong Peng, Bin Wang\",\"doi\":\"10.3901/CJME.2009.02.238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considering the surface tension effect and centrifugal effect, a mathematical model based on Reynolds equation for predicting the drag torque of disengage wet clutches is presented. The model indicates that the equivalent radius is a function of clutch speed and flow rate. The drag torque achieves its peak at a critical speed. Above this speed, drag torque drops due to the shrinking of the oil film. The model also points out that viscosity and flow rate effects on drag torque. Experimental results indicate that the model is reason-able and it performs well for predicting the drag torque peak.\",\"PeriodicalId\":39252,\"journal\":{\"name\":\"Journal of Beijing Institute of Technology (English Edition)\",\"volume\":\"35 1\",\"pages\":\"405-409\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Beijing Institute of Technology (English Edition)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3901/CJME.2009.02.238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Beijing Institute of Technology (English Edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3901/CJME.2009.02.238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Research on Drag Torque Prediction Model for the Wet Clutches
Considering the surface tension effect and centrifugal effect, a mathematical model based on Reynolds equation for predicting the drag torque of disengage wet clutches is presented. The model indicates that the equivalent radius is a function of clutch speed and flow rate. The drag torque achieves its peak at a critical speed. Above this speed, drag torque drops due to the shrinking of the oil film. The model also points out that viscosity and flow rate effects on drag torque. Experimental results indicate that the model is reason-able and it performs well for predicting the drag torque peak.