非均匀导热磁流体动力学方程短轨迹的渐近行为

IF 1.1 3区 数学 Q2 MATHEMATICS, APPLIED
P. Han, Keke Lei, Chenggang Liu, Xuewen Wang
{"title":"非均匀导热磁流体动力学方程短轨迹的渐近行为","authors":"P. Han, Keke Lei, Chenggang Liu, Xuewen Wang","doi":"10.4310/dpde.2022.v19.n3.a3","DOIUrl":null,"url":null,"abstract":". In this paper, we study the asymptotic behavior of short trajectories of weak solutions to the 2D nonhomogeneous heat-conducting magneto- hydrodynamic equations. Several bounds for short trajectories are obtained. An attracting set is constructed, which consists of orbits on [0 , 1] of complete bounded solutions. Furthermore, the attracting set is compact in different topologies.","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotic behavior of short trajectories to nonhomogeneous heat-conducting magnetohydrodynamic equations\",\"authors\":\"P. Han, Keke Lei, Chenggang Liu, Xuewen Wang\",\"doi\":\"10.4310/dpde.2022.v19.n3.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we study the asymptotic behavior of short trajectories of weak solutions to the 2D nonhomogeneous heat-conducting magneto- hydrodynamic equations. Several bounds for short trajectories are obtained. An attracting set is constructed, which consists of orbits on [0 , 1] of complete bounded solutions. Furthermore, the attracting set is compact in different topologies.\",\"PeriodicalId\":50562,\"journal\":{\"name\":\"Dynamics of Partial Differential Equations\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics of Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/dpde.2022.v19.n3.a3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/dpde.2022.v19.n3.a3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

. 本文研究了二维非均匀导热磁流体动力学方程弱解短轨迹的渐近性质。得到了短轨迹的几个界。构造了一个吸引集,它由完全有界解在[0,1]上的轨道组成。此外,在不同的拓扑结构下,吸引集是紧致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic behavior of short trajectories to nonhomogeneous heat-conducting magnetohydrodynamic equations
. In this paper, we study the asymptotic behavior of short trajectories of weak solutions to the 2D nonhomogeneous heat-conducting magneto- hydrodynamic equations. Several bounds for short trajectories are obtained. An attracting set is constructed, which consists of orbits on [0 , 1] of complete bounded solutions. Furthermore, the attracting set is compact in different topologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishes novel results in the areas of partial differential equations and dynamical systems in general, with priority given to dynamical system theory or dynamical aspects of partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信