{"title":"关于高属弦振幅的Rankin-Selberg方法","authors":"I. Florakis, B. Pioline","doi":"10.4310/CNTP.2017.v11.n2.a4","DOIUrl":null,"url":null,"abstract":"Closed string amplitudes at genus $h\\leq 3$ are given by integrals of Siegel modular functions on a fundamental domain of the Siegel upper half-plane. When the integrand is of rapid decay near the cusps, the integral can be computed by the Rankin-Selberg method, which consists of inserting an Eisenstein series $E_h(s)$ in the integrand, computing the integral by the orbit method, and finally extracting the residue at a suitable value of $s$. String amplitudes, however, typically involve integrands with polynomial or even exponential growth at the cusps, and a renormalization scheme is required to treat infrared divergences. Generalizing Zagier's extension of the Rankin-Selberg method at genus one, we develop the Rankin-Selberg method for Siegel modular functions of degree 2 and 3 with polynomial growth near the cusps. In particular, we show that the renormalized modular integral of the Siegel-Narain partition function of an even self-dual lattice of signature $(d,d)$ is proportional to a residue of the Langlands-Eisenstein series attached to the $h$-th antisymmetric tensor representation of the T-duality group $O(d,d,Z)$.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2016-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"On the Rankin-Selberg method for higher genus string amplitudes\",\"authors\":\"I. Florakis, B. Pioline\",\"doi\":\"10.4310/CNTP.2017.v11.n2.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Closed string amplitudes at genus $h\\\\leq 3$ are given by integrals of Siegel modular functions on a fundamental domain of the Siegel upper half-plane. When the integrand is of rapid decay near the cusps, the integral can be computed by the Rankin-Selberg method, which consists of inserting an Eisenstein series $E_h(s)$ in the integrand, computing the integral by the orbit method, and finally extracting the residue at a suitable value of $s$. String amplitudes, however, typically involve integrands with polynomial or even exponential growth at the cusps, and a renormalization scheme is required to treat infrared divergences. Generalizing Zagier's extension of the Rankin-Selberg method at genus one, we develop the Rankin-Selberg method for Siegel modular functions of degree 2 and 3 with polynomial growth near the cusps. In particular, we show that the renormalized modular integral of the Siegel-Narain partition function of an even self-dual lattice of signature $(d,d)$ is proportional to a residue of the Langlands-Eisenstein series attached to the $h$-th antisymmetric tensor representation of the T-duality group $O(d,d,Z)$.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2016-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/CNTP.2017.v11.n2.a4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/CNTP.2017.v11.n2.a4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
On the Rankin-Selberg method for higher genus string amplitudes
Closed string amplitudes at genus $h\leq 3$ are given by integrals of Siegel modular functions on a fundamental domain of the Siegel upper half-plane. When the integrand is of rapid decay near the cusps, the integral can be computed by the Rankin-Selberg method, which consists of inserting an Eisenstein series $E_h(s)$ in the integrand, computing the integral by the orbit method, and finally extracting the residue at a suitable value of $s$. String amplitudes, however, typically involve integrands with polynomial or even exponential growth at the cusps, and a renormalization scheme is required to treat infrared divergences. Generalizing Zagier's extension of the Rankin-Selberg method at genus one, we develop the Rankin-Selberg method for Siegel modular functions of degree 2 and 3 with polynomial growth near the cusps. In particular, we show that the renormalized modular integral of the Siegel-Narain partition function of an even self-dual lattice of signature $(d,d)$ is proportional to a residue of the Langlands-Eisenstein series attached to the $h$-th antisymmetric tensor representation of the T-duality group $O(d,d,Z)$.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.