统一Witten-Reshetikhin-Turaev不变量族的hecke型公式

IF 1.2 3区 数学 Q1 MATHEMATICS
K. Hikami, Jeremy Lovejoy
{"title":"统一Witten-Reshetikhin-Turaev不变量族的hecke型公式","authors":"K. Hikami, Jeremy Lovejoy","doi":"10.4310/CNTP.2017.V11.N2.A1","DOIUrl":null,"url":null,"abstract":"Every closed orientable 3-manifold can be constructed by surgery on a link in S. In the case of surgery along a torus knot, one obtains a Seifert fibered manifold. In this paper we consider three families of such manifolds and study their unified WittenReshetikhin-Turaev (WRT) invariants. Thanks to recent computation of the coefficients in the cyclotomic expansion of the colored Jones polynomial for (2, 2t+ 1)-torus knots, these WRT invariants can be neatly expressed as q-hypergeometric series which converge inside the unit disk. Using the Rosso-Jones formula and some rather non-standard techniques for Bailey pairs, we find Hecke-type formulas for these invariants. We also comment on their mock and quantum modularity.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":"11 1","pages":"249-272"},"PeriodicalIF":1.2000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Hecke-type formulas for families of unified Witten-Reshetikhin-Turaev invariants\",\"authors\":\"K. Hikami, Jeremy Lovejoy\",\"doi\":\"10.4310/CNTP.2017.V11.N2.A1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Every closed orientable 3-manifold can be constructed by surgery on a link in S. In the case of surgery along a torus knot, one obtains a Seifert fibered manifold. In this paper we consider three families of such manifolds and study their unified WittenReshetikhin-Turaev (WRT) invariants. Thanks to recent computation of the coefficients in the cyclotomic expansion of the colored Jones polynomial for (2, 2t+ 1)-torus knots, these WRT invariants can be neatly expressed as q-hypergeometric series which converge inside the unit disk. Using the Rosso-Jones formula and some rather non-standard techniques for Bailey pairs, we find Hecke-type formulas for these invariants. We also comment on their mock and quantum modularity.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\"11 1\",\"pages\":\"249-272\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/CNTP.2017.V11.N2.A1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/CNTP.2017.V11.N2.A1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

每一个闭合的可定向3流形都可以通过在s中的连杆上进行手术来构造。在沿环面结进行手术的情况下,可以得到一个Seifert纤维流形。本文考虑了这类流形的三个族,并研究了它们的统一WittenReshetikhin-Turaev (WRT)不变量。由于最近对(2,2t + 1)-环面结的彩色琼斯多项式的分环展开中的系数的计算,这些WRT不变量可以整齐地表示为收敛于单位圆盘内的q超几何级数。使用Rosso-Jones公式和一些非标准的贝利对技术,我们找到了这些不变量的赫克式公式。我们还评论了它们的模拟和量子模块化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hecke-type formulas for families of unified Witten-Reshetikhin-Turaev invariants
Every closed orientable 3-manifold can be constructed by surgery on a link in S. In the case of surgery along a torus knot, one obtains a Seifert fibered manifold. In this paper we consider three families of such manifolds and study their unified WittenReshetikhin-Turaev (WRT) invariants. Thanks to recent computation of the coefficients in the cyclotomic expansion of the colored Jones polynomial for (2, 2t+ 1)-torus knots, these WRT invariants can be neatly expressed as q-hypergeometric series which converge inside the unit disk. Using the Rosso-Jones formula and some rather non-standard techniques for Bailey pairs, we find Hecke-type formulas for these invariants. We also comment on their mock and quantum modularity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信