光滑Fano加权完全交的界

IF 1.2 3区 数学 Q1 MATHEMATICS
V. Przyjalkowski, C. Shramov
{"title":"光滑Fano加权完全交的界","authors":"V. Przyjalkowski, C. Shramov","doi":"10.4310/CNTP.2020.V14.N3.A3","DOIUrl":null,"url":null,"abstract":"We prove that if a smooth variety with non-positive canonical class can be embedded into a weighted projective space of dimension $n$ as a well formed complete intersection and it is not an intersection with a linear cone therein, then the weights of the weighted projective space do not exceed $n+1$. Based on this bound we classify all smooth Fano complete intersections of dimensions $4$ and $5$, and compute their invariants.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2016-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Bounds for smooth Fano weighted complete intersections\",\"authors\":\"V. Przyjalkowski, C. Shramov\",\"doi\":\"10.4310/CNTP.2020.V14.N3.A3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that if a smooth variety with non-positive canonical class can be embedded into a weighted projective space of dimension $n$ as a well formed complete intersection and it is not an intersection with a linear cone therein, then the weights of the weighted projective space do not exceed $n+1$. Based on this bound we classify all smooth Fano complete intersections of dimensions $4$ and $5$, and compute their invariants.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2016-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/CNTP.2020.V14.N3.A3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/CNTP.2020.V14.N3.A3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 21

摘要

证明了一个具有非正正则类的光滑变种可以作为良构完全交嵌入到维数为$n$的加权射影空间中,且该光滑变种不与其中的线性锥相交,则该加权射影空间的权值不超过$n+1$。在此基础上对维$4$和维$5$的所有光滑Fano完全交进行了分类,并计算了它们的不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounds for smooth Fano weighted complete intersections
We prove that if a smooth variety with non-positive canonical class can be embedded into a weighted projective space of dimension $n$ as a well formed complete intersection and it is not an intersection with a linear cone therein, then the weights of the weighted projective space do not exceed $n+1$. Based on this bound we classify all smooth Fano complete intersections of dimensions $4$ and $5$, and compute their invariants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信