多个zeta值的奇数变体

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Michael E. Hoffman
{"title":"多个zeta值的奇数变体","authors":"Michael E. Hoffman","doi":"10.4310/cntp.2019.v13.n3.a2","DOIUrl":null,"url":null,"abstract":"For positive integers $i_1,...,i_k$ with $i_1 > 1$, we define the multiple $t$-value $t(i_1,...,i_k)$ as the sum of those terms in the usual infinite series for the multiple zeta value $\\zeta(i_1,...,i_k)$ with odd denominators. Like the multiple zeta values, the multiple $t$-values can be multiplied according to the rules of the harmonic algebra. Using this fact, we obtain explicit formulas for multiple $t$-values of repeated arguments analogous to those known for multiple zeta values. Multiple $t$-values can be written as rational linear combinations of the alternating or \"colored\" multiple zeta values. Using known results for colored multiple zeta values, we obtain tables of multiple $t$-values through weight 7, suggesting some interesting conjectures, including one that the dimension of the rational vector space generated by weight-$n$ multiple $t$-values has dimension equal to the $n$th Fibonacci number. We express the generating function of the height one multiple $t$-values $t(n,1,...,1)$ in terms of a generalized hypergeometric function. We also define alternating multiple $t$-values and prove some results about them.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2016-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"An odd variant of multiple zeta values\",\"authors\":\"Michael E. Hoffman\",\"doi\":\"10.4310/cntp.2019.v13.n3.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For positive integers $i_1,...,i_k$ with $i_1 > 1$, we define the multiple $t$-value $t(i_1,...,i_k)$ as the sum of those terms in the usual infinite series for the multiple zeta value $\\\\zeta(i_1,...,i_k)$ with odd denominators. Like the multiple zeta values, the multiple $t$-values can be multiplied according to the rules of the harmonic algebra. Using this fact, we obtain explicit formulas for multiple $t$-values of repeated arguments analogous to those known for multiple zeta values. Multiple $t$-values can be written as rational linear combinations of the alternating or \\\"colored\\\" multiple zeta values. Using known results for colored multiple zeta values, we obtain tables of multiple $t$-values through weight 7, suggesting some interesting conjectures, including one that the dimension of the rational vector space generated by weight-$n$ multiple $t$-values has dimension equal to the $n$th Fibonacci number. We express the generating function of the height one multiple $t$-values $t(n,1,...,1)$ in terms of a generalized hypergeometric function. We also define alternating multiple $t$-values and prove some results about them.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2016-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2019.v13.n3.a2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2019.v13.n3.a2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 64

摘要

对于正整数$i_1,…,i_k$与$i_1 > 1$,我们定义倍数$t$-value $t(i_1,…,i_k)$作为通常无限级数中具有奇数分母的多个zeta值$\zeta(i_1,…,i_k)$的这些项的和。与多个zeta值一样,多个t值也可以根据调和代数的规则进行相乘。利用这一事实,我们得到了重复参数的多个$t$值的显式公式,类似于已知的多个zeta值。多个$t$值可以写成交替的或“有色的”多个zeta值的有理线性组合。利用已知的彩色多个zeta值的结果,我们通过权重7得到了多个$t$值的表,提出了一些有趣的猜想,包括由权重$n$多个$t$值生成的有理向量空间的维数等于$n$斐波那契数。我们用广义超几何函数来表示高度1乘以$t$-值$t(n,1,…,1)$的生成函数。我们还定义了交替复数$t$值,并证明了它们的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An odd variant of multiple zeta values
For positive integers $i_1,...,i_k$ with $i_1 > 1$, we define the multiple $t$-value $t(i_1,...,i_k)$ as the sum of those terms in the usual infinite series for the multiple zeta value $\zeta(i_1,...,i_k)$ with odd denominators. Like the multiple zeta values, the multiple $t$-values can be multiplied according to the rules of the harmonic algebra. Using this fact, we obtain explicit formulas for multiple $t$-values of repeated arguments analogous to those known for multiple zeta values. Multiple $t$-values can be written as rational linear combinations of the alternating or "colored" multiple zeta values. Using known results for colored multiple zeta values, we obtain tables of multiple $t$-values through weight 7, suggesting some interesting conjectures, including one that the dimension of the rational vector space generated by weight-$n$ multiple $t$-values has dimension equal to the $n$th Fibonacci number. We express the generating function of the height one multiple $t$-values $t(n,1,...,1)$ in terms of a generalized hypergeometric function. We also define alternating multiple $t$-values and prove some results about them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信