非线性平流扩散方程的线性分数映射型非线性QCA解

S. Hamada, H. Sekino
{"title":"非线性平流扩散方程的线性分数映射型非线性QCA解","authors":"S. Hamada, H. Sekino","doi":"10.4236/JQIS.2016.64017","DOIUrl":null,"url":null,"abstract":"Linear fractional map type (LFMT) nonlinear QCA (NLQCA), one of the simplest reversible NLQCA is studied analytically as well as numerically. Linear advection equation or Time Dependent Schrodinger Equation (TDSE) is obtained from the continuum limit of linear QCA. Similarly it is found that some nonlinear advection-diffusion equations including inviscid Burgers equation and porous-medium equation are obtained from LFMT NLQCA.","PeriodicalId":58996,"journal":{"name":"量子信息科学期刊(英文)","volume":"06 1","pages":"263-295"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Solution of Nonlinear Advection-Diffusion Equations via Linear Fractional Map Type Nonlinear QCA\",\"authors\":\"S. Hamada, H. Sekino\",\"doi\":\"10.4236/JQIS.2016.64017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear fractional map type (LFMT) nonlinear QCA (NLQCA), one of the simplest reversible NLQCA is studied analytically as well as numerically. Linear advection equation or Time Dependent Schrodinger Equation (TDSE) is obtained from the continuum limit of linear QCA. Similarly it is found that some nonlinear advection-diffusion equations including inviscid Burgers equation and porous-medium equation are obtained from LFMT NLQCA.\",\"PeriodicalId\":58996,\"journal\":{\"name\":\"量子信息科学期刊(英文)\",\"volume\":\"06 1\",\"pages\":\"263-295\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"量子信息科学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/JQIS.2016.64017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"量子信息科学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/JQIS.2016.64017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文对线性分数映射型(LFMT)非线性QCA (NLQCA)——最简单的可逆NLQCA之一进行了分析和数值研究。由线性QCA的连续极限得到线性平流方程或时变薛定谔方程(TDSE)。同样地,从LFMT NLQCA中得到了一些非线性平流扩散方程,包括无粘Burgers方程和多孔介质方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution of Nonlinear Advection-Diffusion Equations via Linear Fractional Map Type Nonlinear QCA
Linear fractional map type (LFMT) nonlinear QCA (NLQCA), one of the simplest reversible NLQCA is studied analytically as well as numerically. Linear advection equation or Time Dependent Schrodinger Equation (TDSE) is obtained from the continuum limit of linear QCA. Similarly it is found that some nonlinear advection-diffusion equations including inviscid Burgers equation and porous-medium equation are obtained from LFMT NLQCA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
108
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信