副协调逻辑的波动理论(一):两个波函数的量子逻辑模型

J. I. S. Filho
{"title":"副协调逻辑的波动理论(一):两个波函数的量子逻辑模型","authors":"J. I. S. Filho","doi":"10.4236/JQIS.2016.63012","DOIUrl":null,"url":null,"abstract":"Paraconsistent logic (PL) is a non-classical logic that accepts contradiction in its foundations. It can be represented in the form of paraconsistent annotated logic with annotation of two values (PAL2v). When used to model quantum phenomena, PAL2v is called paraquantum logic (PQL). In this work, the concept of PQL is applied to create a logical model presenting the fundamental principles of quantum mechanics that support particle-wave theory. This study uses the well-known Young’s double-slit experiment, wherein quantum phenomena appear when a monochromatic light beam passes through the two slits. We focused on a reference point located between the slits, where we observed the effects of two types of wave interferences in a region defined as a two-wave region (2W region). Considering that the effect in this 2W region is very similar to that studied by Huygens, we adopt a paraquantum logical model in which a particle (or quantum) is represented by two wave functions. The two wave functions result in four State Vectors (Ket, Bra,,) in the PQL Lattice that express the symmetry and the entanglement of Quantum Mechanics. The constructed model adapts well to the quantum phenomena, is strongly consistent, and can be considered as an innovative form of analysis in the field of quantum mechanics. Based on this model, we present in two parts (Part I and Part II) the comparative analysis of values found in SchrOdinger’s equation and probabilistic models of wave-particle theory using Bonferroni inequality.","PeriodicalId":58996,"journal":{"name":"量子信息科学期刊(英文)","volume":"29 1","pages":"143-180"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Undulatory Theory with Paraconsistent Logic (Part I): Quantum Logical Model with Two Wave Functions\",\"authors\":\"J. I. S. Filho\",\"doi\":\"10.4236/JQIS.2016.63012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Paraconsistent logic (PL) is a non-classical logic that accepts contradiction in its foundations. It can be represented in the form of paraconsistent annotated logic with annotation of two values (PAL2v). When used to model quantum phenomena, PAL2v is called paraquantum logic (PQL). In this work, the concept of PQL is applied to create a logical model presenting the fundamental principles of quantum mechanics that support particle-wave theory. This study uses the well-known Young’s double-slit experiment, wherein quantum phenomena appear when a monochromatic light beam passes through the two slits. We focused on a reference point located between the slits, where we observed the effects of two types of wave interferences in a region defined as a two-wave region (2W region). Considering that the effect in this 2W region is very similar to that studied by Huygens, we adopt a paraquantum logical model in which a particle (or quantum) is represented by two wave functions. The two wave functions result in four State Vectors (Ket, Bra,,) in the PQL Lattice that express the symmetry and the entanglement of Quantum Mechanics. The constructed model adapts well to the quantum phenomena, is strongly consistent, and can be considered as an innovative form of analysis in the field of quantum mechanics. Based on this model, we present in two parts (Part I and Part II) the comparative analysis of values found in SchrOdinger’s equation and probabilistic models of wave-particle theory using Bonferroni inequality.\",\"PeriodicalId\":58996,\"journal\":{\"name\":\"量子信息科学期刊(英文)\",\"volume\":\"29 1\",\"pages\":\"143-180\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"量子信息科学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/JQIS.2016.63012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"量子信息科学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/JQIS.2016.63012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

副协调逻辑(PL)是一种非经典逻辑,在其基础上接受矛盾。它可以用带两个值注释的副一致注释逻辑(PAL2v)的形式表示。当用于模拟量子现象时,PAL2v被称为准量子逻辑(PQL)。在这项工作中,PQL的概念被应用于创建一个逻辑模型,呈现支持粒子波理论的量子力学的基本原理。这项研究使用了著名的杨氏双缝实验,当单色光束穿过双缝时,就会出现量子现象。我们将重点放在位于狭缝之间的一个参考点上,在那里我们观察到两种波干涉在一个被定义为两波区域(2W区域)的影响。考虑到这个2W区域的效应与惠更斯的研究非常相似,我们采用了一个准量子逻辑模型,其中一个粒子(或量子)由两个波函数表示。这两个波函数在PQL晶格中产生了四个状态向量(Ket, Bra,,),表达了量子力学的对称性和纠缠性。所构建的模型能很好地适应量子现象,具有很强的一致性,是量子力学领域的一种创新的分析形式。在此模型的基础上,我们分两部分(第一部分和第二部分)利用Bonferroni不等式对薛定谔方程和波粒理论概率模型中的值进行了比较分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Undulatory Theory with Paraconsistent Logic (Part I): Quantum Logical Model with Two Wave Functions
Paraconsistent logic (PL) is a non-classical logic that accepts contradiction in its foundations. It can be represented in the form of paraconsistent annotated logic with annotation of two values (PAL2v). When used to model quantum phenomena, PAL2v is called paraquantum logic (PQL). In this work, the concept of PQL is applied to create a logical model presenting the fundamental principles of quantum mechanics that support particle-wave theory. This study uses the well-known Young’s double-slit experiment, wherein quantum phenomena appear when a monochromatic light beam passes through the two slits. We focused on a reference point located between the slits, where we observed the effects of two types of wave interferences in a region defined as a two-wave region (2W region). Considering that the effect in this 2W region is very similar to that studied by Huygens, we adopt a paraquantum logical model in which a particle (or quantum) is represented by two wave functions. The two wave functions result in four State Vectors (Ket, Bra,,) in the PQL Lattice that express the symmetry and the entanglement of Quantum Mechanics. The constructed model adapts well to the quantum phenomena, is strongly consistent, and can be considered as an innovative form of analysis in the field of quantum mechanics. Based on this model, we present in two parts (Part I and Part II) the comparative analysis of values found in SchrOdinger’s equation and probabilistic models of wave-particle theory using Bonferroni inequality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
108
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信