独立算子与旋转之间的双边对称变换

Nikolay Raychev
{"title":"独立算子与旋转之间的双边对称变换","authors":"Nikolay Raychev","doi":"10.4236/jqis.2015.53010","DOIUrl":null,"url":null,"abstract":"This report describes an approach for representation of quantum operators through rotations and rotation through quantum operators. The approach of the proposed method transforms rotation in a kind of a unitary matrix that corresponds to the rotation. Operations with qubits are very similar to the rotation, but with an added phase coefficient. This fact is used to create a process for rotation between unitary matrices. This approach could be used to modifying the controls to apply in a different basis.","PeriodicalId":58996,"journal":{"name":"量子信息科学期刊(英文)","volume":"21 1","pages":"79-88"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Bilaterally Symmetrical Transformation between Independent Operators and Rotations\",\"authors\":\"Nikolay Raychev\",\"doi\":\"10.4236/jqis.2015.53010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This report describes an approach for representation of quantum operators through rotations and rotation through quantum operators. The approach of the proposed method transforms rotation in a kind of a unitary matrix that corresponds to the rotation. Operations with qubits are very similar to the rotation, but with an added phase coefficient. This fact is used to create a process for rotation between unitary matrices. This approach could be used to modifying the controls to apply in a different basis.\",\"PeriodicalId\":58996,\"journal\":{\"name\":\"量子信息科学期刊(英文)\",\"volume\":\"21 1\",\"pages\":\"79-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"量子信息科学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/jqis.2015.53010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"量子信息科学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/jqis.2015.53010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本报告描述了一种通过旋转和通过量子算子旋转来表示量子算子的方法。该方法将旋转变换为一种与旋转对应的酉矩阵。量子比特的操作与旋转非常相似,但增加了相位系数。这个事实被用来创建一个在酉矩阵之间旋转的过程。此方法可用于修改控件,以在不同的基础上应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bilaterally Symmetrical Transformation between Independent Operators and Rotations
This report describes an approach for representation of quantum operators through rotations and rotation through quantum operators. The approach of the proposed method transforms rotation in a kind of a unitary matrix that corresponds to the rotation. Operations with qubits are very similar to the rotation, but with an added phase coefficient. This fact is used to create a process for rotation between unitary matrices. This approach could be used to modifying the controls to apply in a different basis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
108
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信