Makhamisa Senekane, M. Mafu, Francesco Petruccione
{"title":"六态对称量子密钥分发协议","authors":"Makhamisa Senekane, M. Mafu, Francesco Petruccione","doi":"10.4236/JQIS.2015.52005","DOIUrl":null,"url":null,"abstract":"We propose and demonstrate an optical implementation of a quantum key distribution protocol, which uses three-non-orthogonal states and six states in total. The proposed scheme improves the protocol that is proposed by Phoenix, Barnett and Chefles [J. Mod. Opt. 47, 507 (2000)]. An additional feature, which we introduce in our scheme, is that we add another detection set; where each detection set has three non-orthogonal states. The inclusion of an additional detection set leads to improved symmetry, increased eavesdropper detection and higher security margin for our protocol.","PeriodicalId":58996,"journal":{"name":"量子信息科学期刊(英文)","volume":"05 1","pages":"33-40"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Six-State Symmetric Quantum Key Distribution Protocol\",\"authors\":\"Makhamisa Senekane, M. Mafu, Francesco Petruccione\",\"doi\":\"10.4236/JQIS.2015.52005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose and demonstrate an optical implementation of a quantum key distribution protocol, which uses three-non-orthogonal states and six states in total. The proposed scheme improves the protocol that is proposed by Phoenix, Barnett and Chefles [J. Mod. Opt. 47, 507 (2000)]. An additional feature, which we introduce in our scheme, is that we add another detection set; where each detection set has three non-orthogonal states. The inclusion of an additional detection set leads to improved symmetry, increased eavesdropper detection and higher security margin for our protocol.\",\"PeriodicalId\":58996,\"journal\":{\"name\":\"量子信息科学期刊(英文)\",\"volume\":\"05 1\",\"pages\":\"33-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"量子信息科学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/JQIS.2015.52005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"量子信息科学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/JQIS.2015.52005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Six-State Symmetric Quantum Key Distribution Protocol
We propose and demonstrate an optical implementation of a quantum key distribution protocol, which uses three-non-orthogonal states and six states in total. The proposed scheme improves the protocol that is proposed by Phoenix, Barnett and Chefles [J. Mod. Opt. 47, 507 (2000)]. An additional feature, which we introduce in our scheme, is that we add another detection set; where each detection set has three non-orthogonal states. The inclusion of an additional detection set leads to improved symmetry, increased eavesdropper detection and higher security margin for our protocol.