超几何轴与有限辛酉群

IF 1.8 2区 数学 Q1 MATHEMATICS
N. M. Katz, P. Tiep
{"title":"超几何轴与有限辛酉群","authors":"N. M. Katz, P. Tiep","doi":"10.4310/cjm.2021.v9.n3.a2","DOIUrl":null,"url":null,"abstract":"We construct hypergeometric sheaves whose geometric monodromy groups are the finite symplectic groups Sp2n(q) for any odd n ≥ 3, for q any power of an odd prime p. We construct other hypergeometric sheaves whose geometric monodromy groups are the finite unitary groups GUn(q), for any even n ≥ 2, for q any power of any prime p. Suitable Kummer pullbacks of these sheaves yield local systems on A, whose geometric monodromy groups are Sp2n(q), respectively SUn(q), in their total Weil representation of degree q, and whose trace functions are simple-to-remember one-parameter families of two-variable exponential sums. The main novelty of this paper is two-fold. First, it treats unitary groups GUn(q) with n even via hypergeometric sheaves for the first time. Second, in both the symplectic and the unitary cases, it uses a maximal torus which is a product of two sub-tori to furnish a generator of local monodromy at 0.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Hypergeometric sheaves and finite symplectic and unitary groups\",\"authors\":\"N. M. Katz, P. Tiep\",\"doi\":\"10.4310/cjm.2021.v9.n3.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct hypergeometric sheaves whose geometric monodromy groups are the finite symplectic groups Sp2n(q) for any odd n ≥ 3, for q any power of an odd prime p. We construct other hypergeometric sheaves whose geometric monodromy groups are the finite unitary groups GUn(q), for any even n ≥ 2, for q any power of any prime p. Suitable Kummer pullbacks of these sheaves yield local systems on A, whose geometric monodromy groups are Sp2n(q), respectively SUn(q), in their total Weil representation of degree q, and whose trace functions are simple-to-remember one-parameter families of two-variable exponential sums. The main novelty of this paper is two-fold. First, it treats unitary groups GUn(q) with n even via hypergeometric sheaves for the first time. Second, in both the symplectic and the unitary cases, it uses a maximal torus which is a product of two sub-tori to furnish a generator of local monodromy at 0.\",\"PeriodicalId\":48573,\"journal\":{\"name\":\"Cambridge Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cambridge Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cjm.2021.v9.n3.a2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2021.v9.n3.a2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

对于任意奇数n≥3,对于奇数素数p的任意幂次,构造几何单群为有限辛群Sp2n(q)的超几何轴。对于任意偶数n≥2,对于任意素数p的任意幂次,构造几何单群为有限酉群GUn(q)的其他超几何轴。这些超几何轴的适当Kummer回拉在A上产生局部系统,其几何单群分别为Sp2n(q), SUn(q)。其迹函数是易于记忆的单参数双变量指数和族。本文的主要新颖之处有两点。首先,首次通过超几何轴处理n偶的酉群GUn(q)。其次,在辛和酉两种情况下,利用由两个子环积而成的极大环面给出了在0处局部幺正的生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypergeometric sheaves and finite symplectic and unitary groups
We construct hypergeometric sheaves whose geometric monodromy groups are the finite symplectic groups Sp2n(q) for any odd n ≥ 3, for q any power of an odd prime p. We construct other hypergeometric sheaves whose geometric monodromy groups are the finite unitary groups GUn(q), for any even n ≥ 2, for q any power of any prime p. Suitable Kummer pullbacks of these sheaves yield local systems on A, whose geometric monodromy groups are Sp2n(q), respectively SUn(q), in their total Weil representation of degree q, and whose trace functions are simple-to-remember one-parameter families of two-variable exponential sums. The main novelty of this paper is two-fold. First, it treats unitary groups GUn(q) with n even via hypergeometric sheaves for the first time. Second, in both the symplectic and the unitary cases, it uses a maximal torus which is a product of two sub-tori to furnish a generator of local monodromy at 0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信