广义Kähler Taub-NUT度量和两个例外实例

IF 0.7 4区 数学 Q2 MATHEMATICS
Brian Weber
{"title":"广义Kähler Taub-NUT度量和两个例外实例","authors":"Brian Weber","doi":"10.4310/cag.2022.v30.n7.a5","DOIUrl":null,"url":null,"abstract":"We study the one-parameter family of twisted Kahler Taub-NUT metrics (discovered by Donaldson), along with two exceptional Taub-NUT-like instantons, and understand them to the extend that should be sufficient for blow-up and gluing arguments. In particular we parametrize their geodesics from the origin, determine curvature fall-off rates, volume growth rates for metric balls, and find blow-down limits.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Generalized Kähler Taub-NUT metrics and two exceptional instantons\",\"authors\":\"Brian Weber\",\"doi\":\"10.4310/cag.2022.v30.n7.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the one-parameter family of twisted Kahler Taub-NUT metrics (discovered by Donaldson), along with two exceptional Taub-NUT-like instantons, and understand them to the extend that should be sufficient for blow-up and gluing arguments. In particular we parametrize their geodesics from the origin, determine curvature fall-off rates, volume growth rates for metric balls, and find blow-down limits.\",\"PeriodicalId\":50662,\"journal\":{\"name\":\"Communications in Analysis and Geometry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2022.v30.n7.a5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2022.v30.n7.a5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

我们研究了扭曲Kahler Taub-NUT度量的单参数家族(由Donaldson发现),以及两个例外的Taub-NUT-样瞬子,并将它们理解到足以进行膨胀和粘滞论证的程度。特别是,我们从原点参数化它们的测地线,确定曲率衰减率,公制球的体积增长率,并找到吹落极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Kähler Taub-NUT metrics and two exceptional instantons
We study the one-parameter family of twisted Kahler Taub-NUT metrics (discovered by Donaldson), along with two exceptional Taub-NUT-like instantons, and understand them to the extend that should be sufficient for blow-up and gluing arguments. In particular we parametrize their geodesics from the origin, determine curvature fall-off rates, volume growth rates for metric balls, and find blow-down limits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信