带框架转移的同伦不变预轴

IF 1.8 2区 数学 Q1 MATHEMATICS
G. Garkusha, I. Panin
{"title":"带框架转移的同伦不变预轴","authors":"G. Garkusha, I. Panin","doi":"10.4310/cjm.2020.v8.n1.a1","DOIUrl":null,"url":null,"abstract":"The category of framed correspondences $Fr_*(k)$, framed presheaves and framed sheaves were invented by Voevodsky in his unpublished notes [12]. Based on the theory, framed motives are introduced and studied in [7]. The main aim of this paper is to prove that for any $\\mathbb A^1$-invariant quasi-stable radditive framed presheaf of Abelian groups $\\mathcal F$, the associated Nisnevich sheaf $\\mathcal F_{nis}$ is $\\mathbb A^1$-invariant whenever the base field $k$ is infinite of characteristic different from 2. Moreover, if the base field $k$ is infinite perfect of characteristic different from 2, then every $\\mathbb A^1$-invariant quasi-stable Nisnevich framed sheaf of Abelian groups is strictly $\\mathbb A^1$-invariant and quasi-stable. Furthermore, the same statements are true in characteristic 2 if we also assume that the $\\mathbb A^1$-invariant quasi-stable radditive framed presheaf of Abelian groups $\\mathcal F$ is a presheaf of $\\mathbb Z[1/2]$-modules. This result and the paper are inspired by Voevodsky's paper [13].","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2015-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Homotopy invariant presheaves with framed transfers\",\"authors\":\"G. Garkusha, I. Panin\",\"doi\":\"10.4310/cjm.2020.v8.n1.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The category of framed correspondences $Fr_*(k)$, framed presheaves and framed sheaves were invented by Voevodsky in his unpublished notes [12]. Based on the theory, framed motives are introduced and studied in [7]. The main aim of this paper is to prove that for any $\\\\mathbb A^1$-invariant quasi-stable radditive framed presheaf of Abelian groups $\\\\mathcal F$, the associated Nisnevich sheaf $\\\\mathcal F_{nis}$ is $\\\\mathbb A^1$-invariant whenever the base field $k$ is infinite of characteristic different from 2. Moreover, if the base field $k$ is infinite perfect of characteristic different from 2, then every $\\\\mathbb A^1$-invariant quasi-stable Nisnevich framed sheaf of Abelian groups is strictly $\\\\mathbb A^1$-invariant and quasi-stable. Furthermore, the same statements are true in characteristic 2 if we also assume that the $\\\\mathbb A^1$-invariant quasi-stable radditive framed presheaf of Abelian groups $\\\\mathcal F$ is a presheaf of $\\\\mathbb Z[1/2]$-modules. This result and the paper are inspired by Voevodsky's paper [13].\",\"PeriodicalId\":48573,\"journal\":{\"name\":\"Cambridge Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2015-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cambridge Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cjm.2020.v8.n1.a1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2020.v8.n1.a1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 39

摘要

框架通信$Fr_*(k)$、框架预捆和框架捆的范畴是由Voevodsky在他未发表的笔记[12]中发明的。在此基础上,对b[7]中的框架动机进行了介绍和研究。本文的主要目的是证明对于任意Abelian群$\mathcal F$的$\mathbb A^1$-不变拟稳定共轭框架预集,当基域$k$为无限且特征不等于2时,所关联的$\mathbb A^1$-不变的Nisnevich预集$\mathcal F_{nis}$。此外,如果基域$k$是特征异于2的无限完美,则每一个$\mathbb A^1$不变拟稳定的阿贝群Nisnevich框架丛都是严格的$\mathbb A^1$不变拟稳定的。更进一步,如果我们也假设阿贝尔群的$\mathbb A^1$-不变拟稳定的共轭框架预表$\mathbb F$是$\mathbb Z[1/2]$-模块的预表$ $ $,同样的陈述在特征2中是成立的。这一结果和这篇论文的灵感来自Voevodsky的论文[13]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homotopy invariant presheaves with framed transfers
The category of framed correspondences $Fr_*(k)$, framed presheaves and framed sheaves were invented by Voevodsky in his unpublished notes [12]. Based on the theory, framed motives are introduced and studied in [7]. The main aim of this paper is to prove that for any $\mathbb A^1$-invariant quasi-stable radditive framed presheaf of Abelian groups $\mathcal F$, the associated Nisnevich sheaf $\mathcal F_{nis}$ is $\mathbb A^1$-invariant whenever the base field $k$ is infinite of characteristic different from 2. Moreover, if the base field $k$ is infinite perfect of characteristic different from 2, then every $\mathbb A^1$-invariant quasi-stable Nisnevich framed sheaf of Abelian groups is strictly $\mathbb A^1$-invariant and quasi-stable. Furthermore, the same statements are true in characteristic 2 if we also assume that the $\mathbb A^1$-invariant quasi-stable radditive framed presheaf of Abelian groups $\mathcal F$ is a presheaf of $\mathbb Z[1/2]$-modules. This result and the paper are inspired by Voevodsky's paper [13].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信