{"title":"当$d = 2,3$和$u_0$为径向时,具有代数非线性的非线性Schrödinger方程的全局适定性和散射","authors":"B. Dodson","doi":"10.4310/cjm.2019.v7.n3.a2","DOIUrl":null,"url":null,"abstract":"In this paper we discuss global well-posedness and scattering for some initial value problems that are ˙ H 1 subcritical. We prove global well-posedness and scattering for radial data in H s , s > s c , where the initial value problem is ˙ H s c -critical. We make use of the long time Strichartz estimates of [13] to do this.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Global well-posedness and scattering for nonlinear Schrödinger equations with algebraic nonlinearity when $d = 2,3$ and $u_0$ is radial\",\"authors\":\"B. Dodson\",\"doi\":\"10.4310/cjm.2019.v7.n3.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we discuss global well-posedness and scattering for some initial value problems that are ˙ H 1 subcritical. We prove global well-posedness and scattering for radial data in H s , s > s c , where the initial value problem is ˙ H s c -critical. We make use of the long time Strichartz estimates of [13] to do this.\",\"PeriodicalId\":48573,\"journal\":{\"name\":\"Cambridge Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cambridge Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cjm.2019.v7.n3.a2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2019.v7.n3.a2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6
摘要
本文讨论了一些˙H 1亚临界初值问题的全局适定性和散射性。我们证明了H s, s b> sc中径向数据的全局适定性和散射性,其中初值问题是˙H sc临界。我们利用bb0的长时间Strichartz估计来做到这一点。
Global well-posedness and scattering for nonlinear Schrödinger equations with algebraic nonlinearity when $d = 2,3$ and $u_0$ is radial
In this paper we discuss global well-posedness and scattering for some initial value problems that are ˙ H 1 subcritical. We prove global well-posedness and scattering for radial data in H s , s > s c , where the initial value problem is ˙ H s c -critical. We make use of the long time Strichartz estimates of [13] to do this.