论丘的均匀化猜想

IF 1.8 2区 数学 Q1 MATHEMATICS
Gang Liu
{"title":"论丘的均匀化猜想","authors":"Gang Liu","doi":"10.4310/CJM.2019.V7.N1.A2","DOIUrl":null,"url":null,"abstract":"Let $M^n$ be a complete noncompact Kahler manifold with nonnegative bisectional curvature and maximal volume growth, we prove that $M$ is biholomorphic to $\\mathbb{C}^n$. This confirms Yau's uniformization conjecture when M has maximal volume growth.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2016-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"On Yau’s uniformization conjecture\",\"authors\":\"Gang Liu\",\"doi\":\"10.4310/CJM.2019.V7.N1.A2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $M^n$ be a complete noncompact Kahler manifold with nonnegative bisectional curvature and maximal volume growth, we prove that $M$ is biholomorphic to $\\\\mathbb{C}^n$. This confirms Yau's uniformization conjecture when M has maximal volume growth.\",\"PeriodicalId\":48573,\"journal\":{\"name\":\"Cambridge Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2016-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cambridge Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/CJM.2019.V7.N1.A2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/CJM.2019.V7.N1.A2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 21

摘要

设$M^n$是一个具有非负对分曲率和最大体积增长的完全非紧Kahler流形,我们证明了$M$对$\mathbb{C}^n$是生物全纯的。这证实了Yau在M体积增长最大时的均匀化猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Yau’s uniformization conjecture
Let $M^n$ be a complete noncompact Kahler manifold with nonnegative bisectional curvature and maximal volume growth, we prove that $M$ is biholomorphic to $\mathbb{C}^n$. This confirms Yau's uniformization conjecture when M has maximal volume growth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信